

TECHNICAL REPORT MINERAL RESOURCE ESTIMATE On The CANDELARIA PROPERTY

Mineral and Esmeralda Counties, Nevada

Centered at Approximately

Latitude 38° 10' North by Longitude 118° 05' West

- Report Prepared For -

SILVER ONE RESOURCES INC.

Suite 1000, 1055 West Hastings Street Vancouver, British Columbia, Canada V6E 4H1

- Report Prepared By -

JAMES A. McCREA, P. Geo.

Effective Date:

April 30, 2025

IMPORTANT NOTICE

James A. McCrea, P.Geo, prepared 43-101 this Technical Report this report as a National Instrument for Silver One Resources Inc. The quality of information and conclusions contained herein are consistent with the level of effort involved in Mr. McCrea's services, based on: i) information available at the time of preparation, ii) data supplied by outside sources, and iii) the assumptions, conditions and qualifications set forth in this report. This report is intended to be used by Silver One Resources Inc., subject to the terms and conditions of its contract with Mr. McCrea. This contract permits Silver One Resources Inc. to file this report as a Technical Report to satisfy TSX Venture Policy requirements pursuant to National Instrument 43-101, Standards of Disclosure for Mineral Projects. Except for the purposes legislated under provincial securities law, any other use of this report by any third party is at that party's sole risk.

Title Page Photograph – Satellite photograph of the Candelaria Mine Site (Google Earth, 2018).

DATE and SIGNATURE PAGE

CERTIFICATE OF QUALIFIED PERSON

I, James Albert McCrea, am a professional geologist residing at 306 - 10743 139 Street, Surrey, British Columbia, Canada do hereby certify that:

- I am the author of the 'Technical Report on the Candelaria Property, dated April 30, 2025;
- I am a Registered Professional Geoscientist (P. Geo.), Practising, with the Association of Professional Engineers and Geoscientists of British Columbia, (Licence # 21450). I graduated from the University of Alberta, Canada, with a B.Sc. in Geology in 1988;
- I have worked as a geoscientist in the minerals industry for over 30 years and have been estimating mineral resources for over 25 years. I have been directly involved in the mining, exploration, resource estimation and evaluation of mineral properties, mainly, in Canada, the United States, Mexico, Peru, Argentina, Bolivia and Colombia for gold, silver, copper, molybdenum and base metals;
- I visited the Candelaria property in August of 2006 and from July 9th to 11th, 2018, and again on June 9, 2023.
- I had no prior involvement with the Candelaria property before I visited it in 2006 for the previous owner and had no other involvement with the property until contracted to write the 2020 Heap Leech technical report and perform the required site visits;
- I am responsible for all sections of 'Technical Report on the Candelaria Property, dated April 30, 2025;
- I am independent of Silver One Resources Inc. as 'Independence' is described in Section 1.5 of NI 43-101. I have not received, nor do I expect to receive, any interest, directly or indirectly, in Silver One Resources Inc.
- I was retained by Silver One Resources Inc. to prepare an exploration and drill summary, and resource estimate for the Candelaria property, Mineral and Esmeralda Counties, Nevada, U.S.A, in accordance with National Instrument 43-101. The report is based on my review of project files and information provided by Silver One Resources Inc. personnel and the site visits in July 2018 and on June 9, 2023;
- I have read National Instrument 43-101 and Form 43-101F1 and, by reason of my education and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI43-101. This technical report has been prepared in compliance with National Instrument 43-101 and Form 43-101F1;
- As of the date of this certificate, to the best of my knowledge, information and belief, the technical report contains all scientific and technical information that is required to be disclosed to make the technical report not misleading.
- I, the undersigned prepared this report titled 'Technical Report on the Candelaria Property, dated April 30, 2025, in support of the public disclosure of the resource estimate for the potential open pit expansions on the Candeleria property by Silver One Resources Inc.

Effective Date: April 30, 2025

Signed By James A. McCrea

James A. McCrea, B. Sc., P. Geo. (signed and sealed original copy on file)

Dated this 30th day of April, 2025

Table of Contents

1.0	SUMMARY	
1.1	Introduction	9
1.2	Property Description and Ownership	
1.3	Accessibility and Physiography	
1.4	History	
1.5	Geological Setting	
1.6	Mineralization	
1.7	Exploration and Drilling	
1.8	Mineral Processing and Metallurgical Testing	
1.9	Mineral Resources	
1.10	Interpretations and Conclusions	
1.1	.0.1 Project Setting	14
1.1	.0.2 Mineral Tenure, Surface Rights, Water Rights and Royalties	14
1.1	.0.3 Geology and Mineralization	14
1.1	.0.4 Exploration, Drilling and Analytical	15
1.1	.0.5 Data Verification	15
1.1	.0.6 Metallurgical Test work	15
1.1	0.7 Mineral Resource Estimate	15
1.1	0.8 Conclusions	16
1.1	0.9 Recommendations	16
2.0	INTRODUCTION	17
2.1	Introduction and Terms of Reference	
2.2	Site Visit	
2.3	Sources of Information	
2.4		
2.5	Acknowledgements	
2.0		21
	RELIANCE ON OTHER EXPERTS PROPERTY DESCRIPTION and LOCATION	
4.1	Property Location	
4.2	Property Description and Ownership	
4.3	U.S. Mineral Tenure	
4.3	8.1 Candelaria Property Agreements	26
4.4	Royalties and Obligations	
4.5	Environmental Liabilities and Exploration Permitting	
4.6	Environmental Considerations	
5.0	ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY	31
5.1	Accessibility	21
5.2	Climate and Vegetation	
5.3	Local Resources and Infrastructure	
5.3 5.4	Physiography	
5.4	, nysiography	
6.0	HISTORY	33
6.1	Early History – 1863 to 1967	

6.2	Development and Production – 1968 to 2017	
6.3	Drilling and Exploration – 1968 to 2017	34
7.0	GEOLOGICAL SETTING and MINERALIZATION	36
	Regional Geology	
7.1 7.2	Local and Property Geology	
	.2.1 Mineralization	
/.		
8.0	DEPOSIT TYPES	
9.0	EXPLORATION	51
9.1	Magnetometry	
9.2	Induced Polarization ("IP") surveys	
9.3	Rock Sampling	52
10.0	DRILLING	57
10.1		
10.1	-	
10.2		
11.0	SAMPLE PREPARATION, ANALYSES AND SECURITY	73
11.1		
11	1.1.1 Superior/Callahan/Congdon & Carey (1968 – 1975)	
	1.1.2 OxyMin - Nerco – Kinross (1976 - 1999)	
11	1.1.3 Silver Standard (1999 – 2000)	74
11.2	Sample Preparation and Analyses – Silver One	74
11	1.2.1 Sonic Drilling Sampling (2017)	
	1.2.2 Diamond Drill Core Sampling (2019 – 2020)	
	1.2.3 Diamond Drill Core Met Sampling (2022)	
	1.2.4 RC Cuttings Sampling (2019 – 2022)	
11	1.2.5 Surface Rock Sampling	
11.3	Assay Quality Control ("QA/QC")	77
11	1.3.1 QA/QC – Historical 1990 Nerco Drilling	
11	1.3.2 QA/QC – Silver One	
	11.3.2.1 Silver One 2017 Sonic Drilling	
	11.3.2.2 Certified Reference Material	
	11.3.2.3 Field Duplicates	
1.	11.3.2.4 Field Blanks	
1.	1.3.3 Silver One 2019-2022 RC Drilling 11.3.3.1 Certified Reference Material	
	11.5.5.1 Certified Reference Material 11.3.3.2 Field, Crush and Pulp Duplicates	
	11.3.3.3 Field Blanks	
	11.3.3.4 Check Assays	
	11.3.3.5 Sieve Screen Checks	
11.4		
± ± . 7		
12.0	DATA VERIFICATION	
13.0	MINERAL PROCESSING and METALLURGICAL TESTING	107
13.1	Silver Standard 1999 to 2000	108
13.2		
13	3.2.1 Heap Leach Pad and LGSP Testing	

13.2.1	L.1 McClelland 2018	
13.2.1	L.2 Kappes, Cassiday and Assoc. (KCA) – 2018 to 2023	
13.2.2	Mount Diablo Core & Bulk Samples	111
13.2.2	2.1 Bulk Samples (KCA) – 2022 to 2023	111
13.2.2	2.2 Core Samples (KCA) 2022 to 2023	113
13.2.3	Other Technologies - Extrakt/Bechtel	116
13.2.3	3.1 Candelaria Leach Pad Samples	116
13.2.3	3.2 Candelaria Core Samples	116
		110
	RAL RESOURCE ESTIMATES	
-	roduction	-
	tored Silver and Gold	
	tal Equivalents	
	R Calculations	
	lling and Assay Database	
	nple Compositing	
	ree-Dimensional Solid Modelling	
•	ecific Gravity Estimation	
	ade Capping	
	Block Model Description	
	Mount Diablo Resource Estimation	
14.11.1	Semi-Variogram Analysis	
14.11.2	Interpolation	
14.11.3	Interpolation Validation	
14.11.4	Mineral Resource Classification	
14.11.5	Mt. Diablo Underground	
14.11.6	Mount Diablo Mineral Resource Statement	134
14.12	Northern Belle	135
14.12.1	Semi-Variogram Analysis	135
14.12.2	Block Model	136
14.12.3	Interpolation	136
14.12.1	Interpolation Validation	138
14.12.2	Mineral Resource Classification	142
14.12.3	Mineral Resource Statement	142
14.13	Leach Pad Resource	
14.13.1	Drilling and Assay Database	
14.13.2	Three-Dimensional Solid Modelling	
14.13.3	Sample Compositing	
14.13.4	Grade Capping	
14.13.5	Block Model	
14.13.6	Semi-Variogram Analysis	
14.13.7	Interpolation	145
14.13.8	Interpolation Validation	
14.13.9	Mineral Resource Classification	
14.13.10	Metal Prices	145
14.13.11	Leach Pads Mineral Resource Statement	145
14.14	Low Grade Stockpile Resource	
14.14.1	General	
14.14.2	Drilling and Assay Database	
14.14.3	Specific Gravity Estimation	
	, ,	

14	1.14.4 Three-Dimensional Solid Modelling	
14	I.14.5 Sample Compositing	
14	1.14.6 Grade Capping	
14	1.14.7 Block Model	
14	1.14.8 Mineral Resource Classification	
- 14	1.14.9 Low-Grade Stockpile Mineral Resource Statement	
14.1		
14.1		
14.1	7 Factors That May Affect Mineral Resource Estimate and Other Possible Risks	
23.0	ADJACENT PROPERTIES	166
23.0		
	OTHER RELEVANT DATA and INFORMATION	
25.0	INTERPRETATION and CONCLUSIONS	
25.1	Project Setting	
25.1 25.2	Project Setting Mineral Tenure, Surface Rights, Water Rights and Royalties	
	, ,	
25.2	Mineral Tenure, Surface Rights, Water Rights and Royalties	157 157
25.2 25.3	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization	
25.2 25.3 25.4	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization Exploration, Drilling and Analytical	
25.2 25.3 25.4 25.5	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization Exploration, Drilling and Analytical Data Verification Metallurgical Test Work	
25.2 25.3 25.4 25.5 25.6	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization Exploration, Drilling and Analytical Data Verification Metallurgical Test Work Mineral Resource Estimate	
25.2 25.3 25.4 25.5 25.6 25.7	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization Exploration, Drilling and Analytical Data Verification Metallurgical Test Work Mineral Resource Estimate	157 157 157 158 158 158 159 159
25.2 25.3 25.4 25.5 25.6 25.7 25.8	Mineral Tenure, Surface Rights, Water Rights and Royalties Geology and Mineralization Exploration, Drilling and Analytical Data Verification Metallurgical Test Work Mineral Resource Estimate Conclusions	157 157 157 158 158 158 159 159 159

List of Tables

Table 1.1: Classified Resources in \$27.50 Ag Design Pit for Mount Diablo	13
Table 1.2: Classified Resources in Underground Continuity Shape for Mount Diablo	13
Table 1.3: Classified Resources in the \$27.50 Ag Design Pit for Northern Belle	13
Table 1.4: Low-Grade Stockpile Inferred Mineral Resources	13
Table 1.5: Candelaria Leach Pad mineral resources. Effective Date August 6, 2020	14
Table 4.1. Summary of Candelaria claim holdings by type and origin.	23
Table 6.1: Summary of Historic Exploration and Development Drilling at Candelaria	35
Table 10.1: Candelaria 2017 Sonic Drill Hole Collars (UTM NAD83 11N)	57
Table 10.2: Sonic Drill Hole Results – 2017. Ag and Au results in g/t	59
Table 11.1: Summary of Candelaria historic and current CN soluble methods	74
Table 11.2: Summary of duplicate and check results - Candelaria historic drilling	77
Table 11.3: 2017 CRM Samples for Sonic Drilling	78
Table 11.4: 2019 - 2022 CRM Samples - RC Drilling.	81
Table 11.5: Summary of duplicate sample results total Ag and Au - 2019 to 2021 RC of	drilling85
Table 11.6: Summary of duplicate results total Ag and Au - Candelaria 2022 RC drillin	ıg89
Table 11.7: Summary of AAL and Paragon analytical methods used for check pulps	95
Table 11.8: Summary of Paragon check assay results - Candelaria SVE RC drilling. Sa	ample pairs
below detection limit omitted for correlation and MPD	96
Table 12.1: Verification Sample Results, Candelaria	99
Table 13.1: Candelaria Project Summary of Silver One Metallurgical Testing	107

Table 13.2: Candelaria Project Summary of Head Analyses - Leach Pad Composite Sam	
Table 13.3: Candelaria KCA Bottle Roll Leach Test Work on Leach Pad Composite Samples Table 13.4: Candelaria Column Leach Test Work on Leach Pad Composite Samples Table 13.5: Summary of Bulk Sample Weights and Locations	110 110
Table 13.6: Candelaria Project Summary of Bottle Roll Leach Test Work on Bulk Samples	113
Table 13.7: Candelaria Bottle Roll Leach Tests - Core Hole Samples Table 13.8: Comparison of Silver Recovery between Extrakt non-cyanide tests and KCA	and
McClelland Test Results.	
Table 14.1: Metallurgical Recoveries Used for Ag and Au Equivalent Calculations Table 14.2: Mount Diablo Composite Summary Statistics by Domain	
Table 14.2: Northern Belle Composite Summary Statistics by Domain	
Table 14.4: Candelaria Bulk Density Values	
Table 14.5: Mount Diablo Top-Cuts Used by Domain	
Table 14.6: Northern Belle Top-Cuts Used by Domain	
Table 14.7: Block Model Parameters for Candelaria	
Table 14.8: Variogram and Search Parameters for Mount Diablo Domains	
Table 14.9: Summary of Mt. Diablo 'One Out' Cross Validation Results for Soluble Silver	130
Table 14.10: Classification Criteria for Mount Diablo Resources	
Table 14.11: Classified Resources in \$27.50 Ag Design Pit for Mount Diablo	134
Table 14.12: Classified Resources in Underground Continuity Shape for Mount Diablo	
Table 14.13: Variogram and Search Parameters for Northern Belle Domains	
Table 14.14: Summary of NB 'One Out' Cross Validation Results for Soluble Silver	
Table 14.15: Classification Criteria for Mount Diablo Resources	
Table 14.16: Classified Resources in \$27.50 Ag Design Pit for Northern Belle	
Table 14.17: Assay Sample Data for Heap Leach Pad Domain Solids	
Table 14.18: Leach Pads and Low-Grade Stockpiles Block Model Parameters	
Table 14.19: Search Parameters for Heap Leach Assay Domain Solid	
Table 14.20: Leach Pad Mineral Resource with Effective Date of August 6, 2020	
Table 14.21: Low-Grade Stockpile Inferred Mineral Resources. Effective Date April 30, 20	148
Table 14.22: Classified Resources in the \$27.50 Ag Design Pit for Mount Diablo	149
Table 14.23: Classified Resources in Underground Continuity Shape for Mount Diablo	
Table 14.24: Classified Resources in the \$27.50 Ag Design Pit for Northern Belle	
Table 14.25: Classified Resources in the Heap Leach Pads	
Table 14.26: Low-Grade Stockpile Inferred Mineral Resources	149
Table 14.27: Mineral Resource Summary Showing Contained Silver and Gold	
Table 14.28: Assumptions considered for conceptual open Pit optimization Table 14.29: Assumptions considered for conceptual open Pit optimization	
Table 14.29: Assumptions considered for underground resource reporting	
Table A1: Unpatented Mining and Mill Site Claims Optioned from SSR Mining	
Table A2: Patented Claims Acquired from SSR Mining Table A3: Patented Claims Acquired by Silver One, 2019	
Table A3: Patented Claims Acquired by Silver One, 2019 Table A4: Claims Staked by Silver One, Located in September 2017	
Table A5: Claims Staked by Silver One, Located in March 2018	
Table A6: Claims Staked by Silver One to Cover Gaps in Patented Claims	
Table A7: Claims Acquired by Silver One from Claremont Nevada Mines	
Table A8: Claims Located by Silver One in September 2019	
Table A9: Claims Amended by Silver One in January 2022	
Table A10: Claims Located by Silver One in June 2022	

List of Figures

Figure 4.1: Location Map	25
Figure 4.2: Candelaria Claim Map	28
Figure 4.3: Candelaria Patented Claims Detail	29
Figure 4.4: Candelaria Property showing Jed and Sesame Claims Subject to Royalties	30
Figure 5.1: Candelaria Infrastructure Map with Claim Outlines	32
Figure 7.1: Pre-Tertiary Regional Structure Map	37
Figure 7.2: Tectonic Stratigraphic Column for the Candelaria Hills	
Figure 7.3: Regional Geology Map - Mineral and Esmeralda Counties	41
Figure 7.4 Legend for Regional Geology Map	
Figure 7.5: Property Geology Map	
Figure 7.6: Legend for Property Geology Map	
Figure 7.7: Geological Cross-Sections Candelaria Open Pits. See Fig. 7.5 for section location	า 47
Figure 9.1: Total magnetic intensity reduced to the pole - Candelaria project, Nevada	
Figure 9.2: IP Target Map - Candelaria project, Nevada	
Figure 9.3: Target Areas: Magnetic (MVI), IP/Metal Factor, Geochemical anomalies - Candel	
Nevada	
Figure 9.4: Candelaria Surface Rock Geochemistry – Ag, Pb and Sb (ppm)	
Figure 10.1: Candelaria Sonic Drill Hole Locations	
Figure 10.2: Candelaria 2019 - 2022 RC and Core Holes Location Detail	
Figure 10.3: Candelaria Drill Section 404470E – Northern Belle	
Figure 10.4: Candelaria Drill Section 405490E – Mount Diablo	
Figure 11.1: Sonic Drilling Field Duplicates Scatter Plot – Silver	
Figure 11.2: Sonic Drilling Field Blanks – Silver	
Figure 11.3: CRM 601b – sequential plot of ppm Ag	
Figure 11.4: CRM 601b – sequential plot of ppm Au	
Figure 11.5: CRM 680 – sequential plot of ppm Ag	
Figure 11.6: CRM 680 – sequential plot of ppm Au	
Figure 11.7: Field duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling.	
Figure 11.8: Field duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling	
Figure 11.9: Crush (coarse) duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling	
Figure 11.10: Crush (coarse) duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling	
Figure 11.11: Pulp duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling	
Figure 11.12: Pulp duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling	
Figure 11.13: Field duplicates x-y (bias) plot ppm Ag – 2022 RC drilling	
Figure 11.14: Field duplicates x-y (bias) plot ppm Au – 2022 RC drilling	
Figure 11.15: Crush (coarse) duplicates x-y (bias) plot ppm Ag – 2022 RC drilling	
Figure 11.16: Crush (coarse) duplicates x-y (bias) plot ppm Au – 2022 RC drilling	
Figure 11.17: Pulp duplicates x-y (bias) plot ppm Ag – 2022 RC drilling	
Figure 11.18: Pulp duplicates x-y (bias) plot ppm Au – 2022 RC drilling	
Figure 11.19: ppm Ag in field blanks – Candelaria 2019 - 2022 RC drilling	
Figure 11.20: ppm Au in field blanks – Candelaria 2019 - 2022 RC drilling	
Figure 11.21: Percent pulp passing 150 mesh – Paragon sieve checks	
Figure 12.1: Verification Sample Locations	
Figure 13.1: Metallurgical Drill Hole and Bulk Sample Locations	
Figure 13.2: Percent silver extraction vs days of leaching for oxide, mixed and sulphide of	
samples	
Figure 14.1: Candelaria Resource Areas	
Figure 14.2: Geologic Domain Solid Models for Mount Diablo and Northern Belle	

Figure 14.3: Mount Diablo Swath Plot with Ag Soluble Block Grade, Ag Soluble Sample G and Tonnage	
Figure 14.4: Mount Diablo Swath Plot with Number of Samples vs. Tonnage	
Figure 14.5: Mount Diablo Swath Plot with Tonnage vs. Classification	132
Figure 14.6: Mount Diablo Block Model Section 405490E with Total Silver Grades (see se	ection
location Figure 14.1)	133
Figure 14.7: Northern Belle Swath Plot with Ag Soluble Block Grade, Ag Soluble Sample G	Grade
and Tonnage	
Figure 14.8: Northern Belle Swath Plot with Number of Samples vs. Tonnage	
Figure 14.9: Northern Belle Swath Plot with Tonnage vs. Classification	140
Figure 14.10: Northern Belle Block Model Section 404950E with Total Silver Grades, Section	I Line
on Figure 14.1	
Figure 14.11: Diablo Design Pit Isometric View	154

List of Photographs

Photograph No.	12.1: Low-Grade Stockpile East Sonic Drill Collar	.100
	12.2: Low-Grade Stockpile West Sonic Drill Collar	
Photograph No.	12.3: LP2 Sonic Drill Collar	.101
Photograph No.	12.4: LP1 Sonic Drill Collar	.101
Photograph No.	12.5: Sample Location - 2226, LP2	.102
Photograph No.	12.6: Sample Location - 2229, Northern Belle Pit	.102
Photograph No.	12.7: Core Layout Area	.103
Photograph No.	12.8: Core Samples of Lower Candelaria Shear, Rx10	.103
Photograph No.	12.9: Shipping Containers used For Sample Storage	.104
Photograph No.	12.10: Core Storage in Shipping Container	.104
Photograph No.	12.11: Metallurgical Sample Storage	.105

Appendix 1

166

1.0 SUMMARY

1.1 Introduction

At the request of Silver One Resources Inc. ('Silver One' or SVE), James A. McCrea, P. Geo. carried out an independent review of the Candelaria property in the Candelaria Mining District of Mineral and Esmeralda Counties, Nevada, U.S.A. The author conducted a property examination most recently in June 2023, reviewed available exploration results, estimated mineral resources and prepared this independent technical report. This Report was prepared in accordance with the requirements of National Instrument 43-101 and Form 43-101F1 (Standards of Disclosure for Mineral Projects) to be a comprehensive review of the exploration activities on the Property and to provide a current estimation of mineral resources on the Candelaria property.

The Property has a long history of silver production from three open pit mines and historic underground mining operations. Candelaria is currently being explored and evaluated for economic development potential.

1.2 Property Description and Ownership

The Candelaria property (the 'Property') is situated within the Candelaria Mining District approximately 130 miles (210 Km) southeast of the city of Reno, 55 miles southeast of the town of Hawthorne, or 20 miles (32 Km) south of the town of Mina in west-central Nevada, U.S.A. Its geographic coordinates are centred at latitude 38° 10' North by longitude 118° 05' West; along the county line between Mineral and Esmeralda Counties in Townships 3 and 4 North by Range 35 East.

The Candelaria property covers an area of approximately 8,293 ha (20,491 acres) and is comprised of 33 patented and 1135 unpatented federal mining claims situated on lands administered by the United States Bureau of Land Management where patented claims cover most of the immediate Northern Belle and Mount Diablo deposit areas.

Silver One Resources acquired the Candelaria property from Silver Standard Resources ("Silver Standard" or "SSR") through an option agreement that closed in May 2023. In order to obtain its 100% interest, Silver One previously issued to SSR a total US\$3,100,000 of common shares (being 10,424,374 common shares) over a three-year period from 2017 to 2020 and assumed an US\$2,491,757 reclamation bond filed with the BLM. Silver One earned 100% of SSR's interest in the property, subject to a 3% net smelter return royalty payable to Teck Resources USA on production from a certain claim group of the property and a charge of \$0.01 per ton payable for waste rock dumped on certain claims as described in Section 4.1 of this report.

Silver One has posted an additional secured bond totalling USD \$17,085 for the current exploration on the Property. The required permit to carry the current exploration work on the Property was secured on December 15, 2017. It is the author's understanding that this permit is currently valid.

1.3 Accessibility and Physiography

Vehicular access to the Property is readily possible from the city of Reno via Highway I-80 east to the town of Fernley, southeast via State Highway 50 to the town of Fallon, and then south on State Highway 95 through towns of Hawthorne, Luning and Mina. The paved 6-mile property access road joins State Highway 95 approximately 15 miles south of the town of Mina and leads southwesterly to the Candelaria mine site. The driving time from Reno to the Property usually takes about 3 hours. The Property is also accessible via State Highway 95 north-northwest from

Las Vegas. Both Reno and Las Vegas have large airports with many daily domestic and international flights.

The Property is situated in the Candelaria Hills with gentle to moderate topography but with locally high relief. Elevations range from 5,500 to 6,660 feet (1676 to 2030 m) with the mine site at 6,000 feet (1,830 m) AMSL. The climate is considered arid to semi-arid, typical of Nevada's Great Basin physiographic province with temperatures commonly ranging from summer highs in the upper 90's to over 100° Fahrenheit (36-40° C) to winter lows of below 10° Fahrenheit (-12° C). The reported annual precipitation averaged 4.23 inches (107.4 mm). The local vegetation is predominantly sagebrush and sparse dry-land grasses.

There are still readily available power and water sources on site and mobile office and storage facilities for Silver One's exploration operations. There is also sufficient area within the subject claims for any possible future mining and mineral processing facilities. Nevada has a long mining history so there is a large and experienced mining work force as well as mining and exploration supplies and equipment readily available from nearby commercial centres such as Tonopah, Hawthorne, Ely and Reno.

1.4 History

High grade silver veins were discovered in the Candelaria Mountains by a party of Spaniards in 1863 and the mining district was formed the following year. The earliest producer was the Northern Belle mine which was started in 1865 and was later owned by the Northern Belle Mill and Mining Company which operated the underground mine for the next nine years. Mineralization was mined from narrow oxidized high-grade lodes averaging 50 to 60 silver ounces per ton, and ore production rates on the order of 20,000 tons per year. In 1984 the Holmes Mining Co. purchased the Northern Belle mine and Belleville processing facilities and operated under ownership of the Argentum Mining Co. The Mount Diablo mine started production in 1873 and became a major producer in 1883. Candelaria Mines Co. developed the Lucky Hill mine in 1920 and operated until 1923. From 1864 to 1954, the district produced an estimated 22 million ounces of silver mainly from Northern Belle, Mount Diablo, Lucky Hill and Potosi. No district activity is recorded from 1961 to 1967.

In the mid-1960's several mining companies explored the Property for large tonnage, low grade silver mineralization. Among them, the partnership Congdon and Carey with Occidental Minerals Corporation (Oxymin) conducted extensive exploration drilling and defined shallow low-grade deposits at Lucky Hill and Mount Diablo that were amenable to treatment by cyanide leaching. Mine construction began in 1979 with production starting in August 1980 at a rate of 25,400 tons per day (ore and waste). The first doré bullion was poured in October 1980.

Oxymin suspended mining operation in 1982 due to depressed silver prices, and NERCO Minerals Company (NERCO) acquired Oxymin's majority interest in the mine and restarted mining operations in early 1983. Later on 1985, Nerco acquired Congdon and Carey and began mining the Northern Belle pit. By 1987, NERCO was mining at a production rate of 5.5 million tons of ore per year from the Mount Diablo and Northern Belle pits. Mine production continued until 1989 when once again low silver prices forced suspension of all mining operations.

On 1993, Kennecott Corporation acquired Nerco and subsequently sold the mine to Kinross Gold Corporation. Kinross resumed mining operations at Northern Belle, Mt. Diablo and the Georgine pit in January 1994. Mining at Candelaria (from Northern Belle) ceased in early 1997 with leach operations continuing through early 1999. Reclamation of the Candelaria Mine has been ongoing since 1998. The mine dumps were re-contoured and seeded, and the heap leach piles were rinsed

with fresh water and seeded. Other infrastructure has been removed, and the substantial reclamation work has met all state and federal guidelines.

Silver Standard Resources Inc. ("SSR") completed the purchase of Candelaria from Kinross Gold in 2001 for payment of cash and shares and assumption of environmental obligations.

1.5 Geological Setting

The Property is situated regionally within a zone of disrupted structure that forms the transition between the northwest-trending Sierra Nevada province to the west and the north-northeast-trending Basin and Range province to the east. The region is underlain by about 30,000 feet of structurally complex calcareous, clastic and volcanic rocks of Triassic and Jurassic age, flanked on the south by a few thousand feet of calcareous and clastic rocks of Cambrian, Ordovician and Permian age. Granitic rocks, mainly as quartz monzonitic bodies related to the composite Sierra Nevada batholith of Cretaceous age, intrude the metasedimentary and metavolcanic sequences. Cenozoic volcanic rocks, ranging in composition from basalt to rhyolitic welded tuffs, overlie the Paleozoic and Mesozoic rocks. There have been several periods of regional folding and faulting beginning in early Jurassic time accompanied by major thrusting. Cenozoic deformation consisted mainly of normal faulting and the region remains tectonically active.

The Palmetto Formation is the oldest rock unit in the Candelaria district, composed of chert, dolomite and shale of Ordovician age. This formation is unconformably overlain by sandstone of the Permian Diablo Formation which is in turn overlain by the Early Triassic Candelaria Formation comprised of sandstone, shale and a few limestone beds. A large west-trending mass of serpentine containing fragments of Candelaria shale is exposed in the immediate vicinity of the Candelaria mine site. Numerous basic dykes, older than the serpentine, and acidic dykes, younger than the serpentine, occur throughout the district. In the vicinity of the Northern Belle mine, there is a complex of sheared and brecciated metasedimentary rocks and meta dolerite. Tertiary and Quaternary volcanic rocks, consisting of basalt, dacitic tuffs and flows, rhyolite and andesitic breccia, overlie the older stratigraphy.

The pre-Tertiary rocks were repeatedly and complexly folded and faulted before the deposition of the Candelaria Formation. Post-Triassic, pre-Tertiary folding occurred along an east-west axis accompanied by shearing, faulting intrusion of peridotite and dykes, and finally by the emplacement of the mineralized, structurally-controlled veins. Later faulting in late Tertiary and early Pleistocene time resulted in the Basin and Range topography (Koschmann and Bergendahl, 1968).

1.6 Mineralization

There are several types of vein mineralization within the Candelaria district but only the fault- and fracture-controlled lode and manto-style mineralization is of economic importance. Mineralization is hosted in carbonate and clastic sedimentary rocks. Economic minerals are sparsely disseminated or in stockwork of thin quartz-sulphide veins. Deposit geometry includes Irregular bodies, locally conformable to bedding. Primary economic mineralization consists of mainly pyrite and sphalerite with lesser galena, chalcopyrite and arsenopyrite in a gangue of altered country rock, quartz and dolomite. The early high grade oxidized ores were recognizable in outcrop as limonitic and manganese-stained fault breccias with minor amounts of bindheimite, anglesite, smithsonite and cerussite.

The remaining Mount Diablo deposit peripheral to and beneath the open pit occurs primarily in the Lower Candelaria Shear as mixed oxide/sulphide transitional and sulphide-rich mineralization. The remaining Northern Belle mixed oxide/sulphide transitional and sulphide-rich mineralization

occurs peripheral to and beneath its open pit hosted by the Pick handle Gulch Thrust. The current resource below the open pits is the subject of this report.

1.7 Exploration and Drilling

Exploration conducted by Silver One since 2017 includes drilling (a total of 27,404 metres distributed in 45 sonic drill holes, 77 reverse circulation (RC) and 15 diamond drill holes, which are reported in the drilling section of this report) as well as property wide geophysics (airborne magnetometry and ground induced polarization ("IP") surveys reported in section 9), as well as surface rock sampling and geologic mapping.

1.8 Mineral Processing and Metallurgical Testing

Prior to 2001 the Candelaria mineralization had been mined by open-pit methods and processed by heap leaching for over 20 years. During this time extensive metallurgical testing was conducted by its various operators which also includes heap leach production records.

Upon acquiring the Candelaria property in 2017, Silver One initiated metallurgical testing to evaluate possible processing techniques to recover silver from the lode, stockpiles and leach pads material. Metallurgical work was conducted by McClelland Laboratories Inc., of Sparks, NV, in 2018, and Kappes Cassiday & Associates ("KCA") in Reno, NV, during 2018-2019 and 2022-2024. A summary of the metallurgical work carried out by Silver One can be found in Section 13.

Recent testing conducted by SVE suggest that Candelaria's existing mineral resources may be processed by low-cost open-pit, cyanide heap-leach methods, similar to those used in the past. However, better silver recoveries may be achieved by using High-pressure Grinding Roller ('HPGR') technology, potentially improving the economics of the project.

Tests completed to date show that addition of HPGR to the crushing circuit increases the historic silver recoveries (42% and 51%) to recoveries averaging 67% of the silver and nearly 50% of the gold (oxide and mixed fresh lode ores). Cyanide leaching silver recoveries on leach pad material, also crushed with HPGR to 1.7mm, range from 29% (LP1) to 40% (LP2). These scenarios could positively impact the operational results.

Silver One is also testing other established methods including flotation combined with cyanidation, as well as new technologies which have shown the potential to improve the silver recoveries. For example, non-cyanide leach tests using Extrakt Process Solutions technology on leach pad material reports silver recoveries of 63% (LP1) and 69% (LP2). This technology is described at the end of section 13.

1.9 Mineral Resources

Mineral Resources at Candelaria are reported by area. The in-ground Mount Diablo and Northern Belle resources are listed in Tables 1.1 to 1.3. The resource uses a US \$9.273 NSR cut-off inside the \$27.50 Ag preliminary design pit and a 90 g/t Ag T cut-off for underground with a 70% mining recovery below the design pit. The leach pads resource is reported with a 0.01 g/t silver cut-off grade as it will be mined in their entirety with no grade control or selectivity. The leach pad resource was reported in a Silver One's Technical report in 2020 and a summary is included in section 14.15 of this report. The Effective Date for the Mount Diablo and Northern Belle mineral resource estimate is April 30, 2025.

Table 1.1. Classified Resources in \$27.50 Ag Design 1 it for mount blabio							
Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t
Measured	5,470	50	0.15	54	101	0.19	106
Indicated	13,250	47	0.15	52	95	0.18	100
M&I	18,7230	48	0.15	52	96	0.19	102
Inferred	2,780	31	0.11	34	67	0.17	72

Table 1.1: Classified Resources in \$27.50 Ag Design Pit for Mount Diablo

Table 1.2: Classified Resources in Underground Continuity Shape for Mount Diablo

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t
Measured	220	76	0.13	77	175	0.28	177
Indicated	980	70	0.11	71	166	0.26	167
M&I	1,200	71	0.11	72	8	0.27	169
Inferred	650	56	0.07	57	150	0.24	150

Table 1.3: Classified Resources in the \$27.50 Ag Design Pit for Northern Belle

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t		
Measured	1,250	50	0.24	59	79	0.30	89		
Indicated	2,100	50	0.18	56	82.	0.25	89		
M&I	3,350	50	0.20	57	81	0.27	89		
Inferred	180	44.	0.17	47	90	0.27	93		

Table 1.4: Low-Grade Stockpile Inferred Mineral Resources

Zone	Classification	Tonnes (000)	Ag (FA) (g/t)	Au (FA) (g/t)	AgEq g/t	AgCN (g/t)	AuCN (g/t)
SP_E	Inferred	1,640	24	0.09	17	17	0.08
SP_W	Inferred	2,140	25	0.10	16	15	0.09
Total	Inferred	3,780	25	0.10	16	16	0.09

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of

Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit.

Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation.

A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

 The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014.
 Total values may not sum correctly due to rounding.

Table 1.5: Candelaria Leach Pad mineral resources. Effective Date August 6, 2020.

	Candelaria Heaps									
								Con	Contained Metal*	
		Tonnes	Ag (FA)	Au (FA)	AgEq(T)	CN Soluble	CN Soluble			AgEq
Deposit	Classification	(000)	(g/t)	(g/t)	(g/t) -	Ag (g/t)	Au (g/t)	Ag (Moz)	Au (oz)	(Moz)
LP1	Indicated	22,180.000	42	0.074	43.00	16	0.022	30.02	52,000	30.84
LP2	Inferred	11,450.000	42	0.100	44.00	23	0.032	15.40	36,700	16.10
* - Contain	* - Contained Metal based on fire assay grades									
+ - AgEQ(T)	formula = Ag (T	⁻) + (Au (T) * re	ecovery *6	7.73/0.884	1). Field A	g, Au recoveri	ies were used	in the calcu	lation.	
Prices for c	alculating contai	ined silver equ	ivalents a	re US\$27.5	oz Ag and	US\$2,106 oz A	u			
LP1 cyanide	e leach estimate	d field silver a	nd gold re	coveries ar	e 25% and	20% respectiv	ely. KCA lab c	column leach	i tests Ag a	nd Au
	are 29% and 21%	, ,								
LP2 cyanide	e leach estimate	ed field silver o	and gold re	coveries a	re 35% and	25% respectiv	ely. KCA lab c	column leach	i tests Ag a	nd Au
	recoveries are 40% and 27% respectively									
Metal prices used for this resource estimate were US\$1500/oz Au, US\$20/oz Ag. Same prices were used for the processing scenarios										
related to reasonable prospects for eventual economic extraction										
The MRE above was reported in "Technical Report on the Leach Pads Within the Candelaria Property" prepared in accordance with NI										
43-101 stai	43-101 standards, with an effective date August 6, 2020.									

Resources from all zones are summarized in Section 14.15.

1.10 Interpretations and Conclusions

1.10.1 Project Setting

The Project is located in an area of Nevada with moderate relief, good road access and other required infrastructure. Mining activities should be capable of being conducted year-round. There is sufficient suitable land area available within the mineral claims for any future pit expansions, leach pads, mine waste disposal, and installations such as a processing plant, and related mine infrastructure.

1.10.2 Mineral Tenure, Surface Rights, Water Rights and Royalties

Silver One acquired 100% interest in the Candelaria property in May 2023. The Property covers an area of approximately 8,293 ha (20,492 acres) and is comprised of 33 patented and 1135 unpatented federal mining claims. Several internal third-party claims are not proximal to potential future mining operations.

1.10.3 Geology and Mineralization

Silver-gold-lead-zinc mineralization at Candelaria occurs primarily along thrust- related structures including the Pickhandle thrust and the Lower Candelaria shear ("LCS"). The

mineralization is oxidized to a depth of 200 m. The deposit is considered to be an example of a disseminated Ag-Au deposit hosted within sedimentary rocks and distal to a porphyry Cu deposit. The deposit type used for exploration targeting is appropriate to the mineralization identified. The deposit remains open down-dip and along strike.

Knowledge and documentation of the deposit settings, lithologies, and structural and alteration controls on mineralization are sufficient to support the Mineral Resource estimate.

1.10.4 Exploration, Drilling and Analytical

Silver One maintains a robust QA/QC program that meets or exceeds industry standards. Only minor QAQC information is available for historic data; however, the data is believed to be reliable as it was used for successful mine exploration and development over a period of more than 20 years.

The drilling and assay data provided by Silver One is believed to be adequate for the purposes of this mineral resource estimate and the author has no reason to believe that any of the information is inaccurate. The exploration programs completed to date are considered appropriate to the style of the known mineralization within the Project area.

1.10.5 Data Verification

The QP visited the subject property and area in August of 2006, on July 9th to 11th, 2018, and again on June 9th, 2023. During the site visits for SVE, the QP completed data verification including checking drill collars, sampling leach pads and mineralized outcrops, reviewed drill core and RC cuttings, reviewed site work areas and storage, other checks as deemed appropriate.

The QP is of the opinion that these data are adequate for the purposes used in this technical report.

1.10.6 Metallurgical Test work

Silver One contracted McClelland Laboratories Inc., of Sparks, NV, in 2018 and Kappes Cassiday & Associates ("KCA") in Reno, NV, during 2018-2019 and 2022-2024, to conduct metallurgical testing on the various type of materials (leach pads and oxidized/mixed/sulphide mineralization obtained from pits and drill core). During 2023 and 2024, the Company engaged Extrakt Process Solutions ("EPS") to conduct non-cyanide leach tests. The best column cyanide-leach silver recoveries obtained by KCA in oxide, sulfide and mixed material crushed with HPGR to 1.7 mm are 61%, 60% and 71% respectively.

Metallurgical testing has been encouraging to date and is ongoing.

1.10.7 Mineral Resource Estimate

Mineral Resources at Candelaria are reported separately by area: Mt. Diablo and Northern Belle open-pittable; Mt. Diablo underground; leach pads and Low-Grade Stockpiles ("LGSP"). The current resources are classified as Measured, Indicated and Inferred following CIM Definition Standards (2014) and the sample database used for the estimation is adequate for the purpose used.

The Mineral Resource estimate is based on reasonable assumptions of eventual economic extraction and assuming open pit mining method for all but the small Mt. Diablo underground resource.

The following factors could affect the Mineral Resources: unknown volume of underground working; assumptions used to estimate Total Ag and Au values from historic CN soluble values; limited specific gravity data; commodity price and exchange rate assumptions; pit slope angles and other geotechnical factors; assumptions used in generating the constraining pit shell, including metal recoveries, and mining and process cost assumptions.

1.10.8 Conclusions

The exploration and development studies completed to date by Silver One support further work. This work includes further exploration and resource drilling; further metallurgical test work; environmental studies and initial permitting; and initial economic studies.

Project risk factors that may affect the mineral resource estimation include:

- Unknown extent of historic workings at Mt. Diablo
- Restricted number of total Ag and Au assays (FA)
- Limited number of specific gravity measurements
- Price and cost assumptions
- Recovery and processing assumptions

1.10.9 Recommendations

A two-phase exploration program is recommended to evaluate its potential for further bulktonnage precious metal production and additional mineralization.

The Phase I program will update the resource, complete further metallurgy and a preliminary economic study. Total cost is estimated at US\$4.06M.

The Phase II program totals US\$3.46M and is not contingent on positive results from the Phase I program but will follow a thorough compilation and review of Phase I results by a qualified person.

2.0 INTRODUCTION

2.1 Introduction and Terms of Reference

At the request of Silver One Resources Inc. ('Silver One' or the 'Company' or 'SVE'), James A. McCrea, P. Geo. carried out an independent review of the Candelaria property (the 'Property') in the Candelaria Mining District of Mineral and Esmeralda Counties, Nevada, U.S.A. The author conducted a property examination, reviewed available exploration results, estimated resources and prepared this independent technical report (the 'Report'). This Report was prepared in accordance with the requirements of National Instrument 43-101 ('NI 43-101') and Form 43-101F1 (Standards of Disclosure for Mineral Projects) to be a comprehensive review of the exploration activities on the Property, to estimate current mineral resources in accordance with NI 43-101 and with 2014 Canadian Institute of Mining, Metallurgy and Petroleum ("CIM") Definition Standards and, if warranted, to provide recommendations for future work. This Report is intended to be read in its entirety.

2.2 Site Visit

The author is an independent qualified person ('QP') as defined by NI 43-101 and visited the Candelaria property in August of 2006 and from July 9th to 11th, 2018 and again on June 9, 2023. The author conducted traverses across the leach pads and stockpiles, confirmed drill hole collars, and visited the existing open pits on the property. The author reviewed all aspects of the historical exploration work with Silver One personnel including results from historical exploration work, drilling operations, core storage and results, local lithological and structural features, sampling and shipping procedures, and available project documentation. The author examined core samples from the Lower Candelaria Shear. The author also collected six verification samples from the heaps, low grade stockpiles and the open pits (2018). The Property has three past-producing open pit mines (the Lucky Hill and Mount Diablo pits merged during the last stage of production) and is currently being assessed with advanced exploration work for a mining operation. Results and photographs from the site visits accompany this report in Section 12 with data verification.

2.3 Sources of Information

The author was not involved in any previous exploration activities on the Property. This report documents recent exploration drilling results and refers to past works undertaken by other qualified geologists and professional field personnel. Other non-project specific reports by qualified personnel are referenced whenever possible. The information, conclusions, opinions and recommendations are based upon:

- information available to the author at the time of the preparation of this report;
- assumptions, conditions and qualifications as set forth in this report;
- data, reports and other information provided by Silver One and other third party sources; and
- technical reports from the operating mines in the area, plus other published government reports and scientific papers.

During the site visit and while preparing this report, the author reviewed all of the readily available exploration and technical reports pertaining to this property. This exploration information is of good quality, and there is no reason to believe that any of the information is incomplete or inaccurate.

Information concerning mining claims was provided by Silver One and has not been independently verified by the author. Population statistics, weather and local information for the project area was obtained from Wikipedia (<u>https://en.wikipedia.org/wiki/Candelaria, Nevada</u> and

https://en.wikipedia.org/wiki/Mineral County, Nevada). A detailed list of references and sources of information has been provided in the References section of this report.

2.4 Abbreviations and Units of Measure

Metric units are used throughout in this report and currencies are in United States Dollars (US\$) unless otherwise stated. Market gold or silver metal prices are reported in US\$ per troy ounce. A list of abbreviations that may be used in this report is provided below.

Abbreviation	Description	Abbreviation	Description
AA	atomic absorption	li	limonite
Ag	silver	m	metre
AMSL	above mean sea level	m ²	square metre
As	arsenic	m ³	cubic metre
Au	gold	Ма	million years ago
AuEQ	gold equivalent grade	mg	magnetite
AgEQ	silver equivalent grade	mm	millimetre
Az	azimuth	mm ²	square millimetre
b.y.	billion years	mm ³	cubic millimetre
CAD\$	Canadian dollar	Mn	pyrolusite
cl	chlorite	Мо	Molybdenum
cm	centimetre	Moz	million troy ounces
cm ²	square centimetre	ms	sericite
cm ³	cubic centimetre	Mt	million tonnes
сс	chalcocite	mu	muscovite
ср	chalcopyrite	m.y., Ma	million years
Cu	copper	NI 43-101	National Instrument 43-101
су	clay	Opt, oz/T	ounces per short ton
°C	degree Celsius	oz	troy ounce (31.1035 grams)
°F	degree Fahrenheit	Pb	lead
DDH	diamond drill hole	pf	plagioclase
ер	epidote	ppb	parts per billion
ft	feet	ppm	parts per million
ft ²	square feet	ру	pyrite
ft ³	cubic feet	QA	Quality Assurance
g	gram	QC	Quality Control
gl	galena	qz	quartz
go	goethite	RC	reverse circulation drilling
GPS	Global Positioning System	RQD	rock quality designation
gpt, g/t	grams per tonne	Sb	antimony
ha	hectare	SEDAR+	System for Electronic Document Analysis and Retrieval
Hg	mercury	SG	specific gravity
hm	hematite	sp	sphalerite
ICP	induced coupled plasma	short ton, ton	short ton (2,000 pounds)
kf	potassic feldspar	t, tonne	tonne (1,000 kg or 2,204.6 lbs)
kg	kilogram	to	tourmaline
km	kilometre	um	micron
km ²	square kilometre	US\$	United States dollar
1	litre	Zn	zinc

2.5 Acknowledgements

The author wishes to thank the officers and personnel of Silver One for providing the technical materials and assistance required to prepare this report.

3.0 RELIANCE ON OTHER EXPERTS

The author has relied on Silver One and their US and Canadian contractors in regard to mining claim registration, expiration dates and legal validity of the mining claims. (R. Diaz, Pers. Comm, Jan. 2025)

This applies to Section 4 and the summary of the report.

4.0 **PROPERTY DESCRIPTION and LOCATION**

4.1 **Property Location**

The Candelaria Project is situated within the Candelaria Mining District approximately 130 miles (210 km) southeast of the city of Reno, 55 miles (90 km) southeast of the town of Hawthorne, or 20 miles (30 km) south of the small town of Mina in west-central Nevada, U.S.A. Its geographic coordinates are centered at latitude 38° 10' North by longitude 118° 05' West or UTM coordinates of 405,100 E and 4,224,900 N, NAD83 Zone 11 North; along the county line between Mineral and Esmeralda Counties in Townships 3 and 4 North by Range 35 East. See Figures 4.1 to 4.3 that show the property location and claim boundaries.

4.2 **Property Description and Ownership**

The Candelaria property is comprised of 33 patented and 1,135 unpatented federal mining claims situated on lands administered by the United States Bureau of Land Management. The claims are located using the Public Land Survey System as follows:

- Township 3 North, Range 34 East: Sections 1, 2, 11 and 12;
- Township 3 North, Range 35 East: Sections 1 to 12, 15 and 16;
- Township 4 North, Range 34 East: Sections 24, 25, 35 and 36;
- Township 4 North, Range 35 East: Sections 13 to 36

The mining claims cover an area of 8,293 ha (20,492 acres) with patented claims covering most of the immediate Northern Belle and Mount Diablo deposit areas. The claims are summarized in Table 4.1 and are shown in Figures 4.2 and 4.3. A detailed list of patented and unpatented claims is provided in Appendix A. Public Land Survey Townships and Ranges with claim outlines are shown on Figure 5.1. These claims can be grouped as follows:

- Patented Lode Claims (135.57 ha.), Unpatented Lode Claims (1608.63 ha.) and Mill Site Claims (215.70 ha.) acquired from SSR Mining in 2017,
- Patented Lode Claims (5.9 ha, 14.6 acres) acquired by Silver One in 2019 from third party,
- Claims staked by Silver One in 2017 and 2018 (3,393.77 ha.),
- Claims acquired by Silver One from Claremont Nevada Mines (83.77 ha.),
- Claims staked by Silver One in 2019 (633.68 ha.),
- Claims Amended by Silver One in 2022 to cover a gap (83.61 ha.),
- Claims staked by Silver One in 2022 (2,797.89 ha.)

(Totals above may not add-up due to certain claim overlaps)

Silver One holds these claims through Silver One Resources USA Inc. a wholly-owned subsidiary of Silver One. The subject claims are reported in good standing by Silver One (R. Diaz, Pers. Comm., 2024). The author has no reason to believe that the claim status is not valid, but has not personally conducted a detailed review of the land title.

Claim Series	Туре	County	No. Claims	Origin
CM 1 to 198; JANN 14 to 22	Unpatented Lode	Mineral	174	CMC (SSR)
JANN 23	Unpatented Lode	Mineral / Esmeralda	1	CMC (SSR)
JANN 24 to 28	Unpatented Lode	Esmeralda	5	CMC (SSR)
KC 1 to 107	Millsite	Mineral	95	CMC (SSR)
PERU 1 to 7	Unpatented Lode	Esmeralda	7	CMC (SSR)
RESCUE 17 to 18; 20; 237 to 238	Unpatented Lode	Esmeralda	5	CMC (SSR)
Various	Patented Lode	Mineral	30	CMC (SSR)
G. Washington; Good Faith; Hecla Quartz	Patented Lode	Mineral	3	SVE
FMS 1 to 163	Unpatented Lode	Mineral	156	SVE 2017
FMS 170 to 173	Unpatented Lode	Mineral / Esmeralda	4	SVE 2017
FMS 174 to 175	Unpatented Lode	Esmeralda	2	SVE 2017
CZ 1-15; CZ 24-35; CZ 47- 56; CZ 162 – 195; CM 21N – 197N; CM 23S-154S	Unpatented Lode	Mineral	92	SVE 2018
CZ 16-19; CZ 36-39; CZ57-59; CZ 70-73/75; CZ141-143; CZ 150; CZ 160-161	Unpatented Lode	Mineral / Esmeralda	22	SVE 2018
CZ 20-23; CZ 40-46; CZ 60-69; CZ 74; CZ 76-140; CZ 144-149; CZ 151-159;	Unpatented Lode	Esmeralda	102	SVE 2018
NA 1-85	Unpatented Lode	Mineral	85	SVE 2019
FMS 155A-180A; IP 1-336	Unpatented Lode	Mineral	354	SVE 2022
Flag 13; Flag 15-19; Flag 21/23/25/27	Unpatented Lode	Esmeralda	10	Claremont Nevada
A-1; A-3 to 21	Unpatented Lode	Mineral	20	SVE 2018 Fractions
A-2	Unpatented Lode	Mineral / Esmeralda	1	SVE 2018 Fractions

Table 4.1. Summary of Candelaria claim holdings by type and origin.

4.3 U.S. Mineral Tenure

Information in this sub-section has been compiled from the Mining Claim Procedures for Nevada Prospectors and Miners: Nevada Bureau of Mines and Geology by Papke and Davis (2002). The QP has not independently verified this information, and has relied upon the Papke and Davis report, which is in the public domain, for the data presented.

Federal (30 USC and 43 CFR) and Nevada (NRS 517) laws concerning mining claims on Federal land are based on an 1872 Federal law titled "An Act to Promote the Development of Mineral Resources of the United States." Mining claim procedures still are based on this law, but the original scope of the law has been reduced by several legislative changes.

The Mineral Leasing Act of 1920 (30 USC Chapter 3A) provided for leasing of some non-metallic materials; and the Multiple Mineral Development Act of 1954 (30 USC Chapter 12) allowed simultaneous use of public land for mining under the mining laws and for lease operation under the mineral leasing laws. Additionally, the Multiple Surface Use Act of 1955 (30 USC 611-615) made "common variety" materials non- locatable; the Geothermal Steam Act of 1970 (30 USC Chapter 23) provided for leasing of geothermal resources; and the Federal Land Policy and Management Act of 1976 (the "BLM Organic Act," 43 USC Chapter 35) granted the Secretary of the Interior broad authority to manage public lands. Most details regarding procedures for locating claims on Federal lands have been left to individual states, providing that state laws do not conflict with Federal laws (30 USC 28; 43 CFR 3831.1).

Mineral deposits are located either by lode or placer claims (43 CFR 3840). The locator must decide whether a lode or placer claim should be used for a given material; the decision is not always easy but is critical. A lode claim is void if used to acquire a placer deposit, and a placer claim is void if used for a lode deposit. The 1872 Federal law requires a lode claim for "veins or lodes of quartz or other rock in place" (30 USC 26; 43 CFR 3841.1), and a placer claim for all

"forms of deposit, excepting veins of quartz or other rock in place" (30 USC 35). The maximum size of a lode claim is 1,500 ft in length and 600 ft in width (20.66 ac/8.36 ha.), whereas an individual or company can locate a placer claim as much as 20 ac in area.

Claims may be patented or unpatented. A patented claim is a lode or placer claim or mill site for which a patent has been issued by the Federal Government, whereas an unpatented claim means a lode or placer claim, tunnel right or mill site located under the Federal (30 USC) act, for which a patent has not been issued.

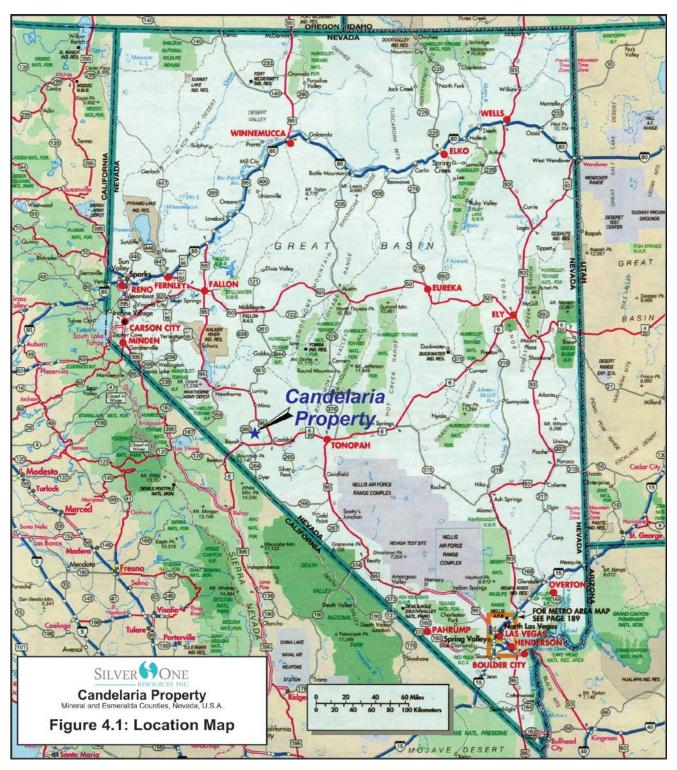


Figure 4.1: Location Map

4.3.1 Candelaria Property Agreements

Silver Standard Resources Inc. (Silver Standard), now renamed SSR Mining Inc. ('SSR'), purchased the Candelaria property from Kinross Candelaria Mining Company, an indirect wholly owned subsidiary of Kinross Gold Corporation ('Kinross') in May 2001. On January 16, 2017, SSR Mining Inc. entered into an option agreement with Silver One, pursuant to which Silver One was granted an option to acquire a 100% interest in the Candelaria property.

In order to obtain its 100% interest, Silver One previously issued to SSR Mining a total US\$3,100,000 of common shares (being 10,424,374 common shares) over a three-year period from 2017 to 2020, and assumed a US\$2,491,757 reclamation bond filed with the BLM. (Silver One NR, 2023). Silver One earned 100% of SSR's interest in the property in May 2023, subject to a 3% net smelter return royalty payable to Teck Resources USA on production from a certain claim group of the property and a charge of \$0.01 per ton payable for waste rock dumped on certain claims.

4.4 Royalties and Obligations

Certain claims are subject to royalty obligations and payments where certain claims (Jed 12-16) are subject to a 3 percent net smelter return ('NSR') payable to Teck Resources USA and other claims (Sesame 1-15) are subject to a charge of \$0.01 per ton for waste rock dumped on these claims. The original Jed and Sesame claims were dropped in 1988 and restaked as CM claims (see Figure 4.4 to determine which CM claims are affected).

Federal unpatented lode and mill site claims are maintained by an annual payment of claims maintenance fees, which is USD \$200.00 per claim and is payable to the United States Department of the Interior, Bureau of Land Management on or before September 1 each year. Failure to pay the maintenance fees on time will result in the unpatented claims being forfeited. For Assessment Year 2024, Silver One paid USD \$227,000 in Federal claims maintenance fees for claims held in Silver One Resources (USA) Inc. and for claims held by the Candelaria Mining Company. Silver One, as of the effective date of this report, has paid the annual fees for 2024. (R. Diaz, pers. comm., 2025)

Patented lode claims are private land and therefore not subject to federal claim maintenance requirements but as private land, they are subject to property taxes assessed by Mineral County, Nevada, which are due annually on the third Monday of August. Silver One's property taxes totalled USD \$4,424.96 for the 2024-2025 Assessment Year. Silver One, as of the effective date of this Report, has paid the county taxes.

4.5 Environmental Liabilities and Exploration Permitting

Exploration and mining activities in Nevada are subject to federal and state regulations administered by the United States Bureau of Land Management ('BLM') and various State and County agencies, including Nevada Department of Environmental Protection.

Currently, the mine continues to be under reclamation and operational and environmental permits are in place. Previous operator Kinross submitted the Final Permanent Closure Plan ('Closure Plan') to the Nevada Department of Environmental Protection ('NDEP') and the BLM in June 1998. The BLM Environmental Assessment report for mine closure was issued on July 21, 2000. and reclamation has continued after the acquisition of the property by SSR and then by SVE.

On August 2023 the Reclamation Permit was transferred to Silver One Resources. Silver One assumed the environmental liabilities for the Property and posted a secured bond totalling US

\$2,491,757.00. The required permit to carry the current exploration work on the Property was secured on December 15, 2017 and most recently amended January 11, 2022. The Nevada Division of Minerals holds a financial guarantee posted by Silver One in the amount of US \$17,085.00 to cover reclamation of approved exploration surface disturbance. The author's understanding is that this permit is currently valid.

4.6 Environmental Considerations

To the best of the author's knowledge, there are no environmental considerations or other significant factors or risks that may affect access, title, or the right or ability to perform exploration and development work on the Property.

396,000	400 D00	404,000	400,000	412,000
4,228,000			8 9 9 9 9 8 9 8 9 8 9 8 7 7 7 7 7 7 7 7	4,228,000
		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	201 201 201 201 201 201 201 201 201 201		N I: N	
	• • • • • • • • • • • • • • • • • • •	x x		
	1015 1015 1015 1015 1015 1015 1015 1015	113 113 114 114 114 114 114 114 114 114	1 1	-
4,226,000			FIRSTAL FIRSTAL FIRSTAL CZ INC 3 (C. 2) (C. 2) (C. 2)	4,226,000
	1211 1211 1211 1211 1211 1211 1211 121	AND		+
		q z z z z z z z z z z z z z z z z z z z	No.7 No.7 No.7 No.7 No.7 No.7 C/2 C/2 <thc< td=""><td></td></thc<>	
			11 KC 75 KC 8 KC 9 KC 9 KC 9 KC 9	
	Pase Prase P	Aute Nata Nata Nata Nata Nata Nata Nata Na	B B B DIS DIS <thdis< th=""> <thdis< th=""> <thdis< th=""></thdis<></thdis<></thdis<>	-
	8 8 8 9 mm 8 8 8 8 8 mm 8 8 8 8 mm 8 8 8 8	4 5 7 8 % % 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Image: Constraint of the state of	
4.224.000			C C C C C C C C C C C C C C C C C C C	4,224,000
	######################################	PRS1F PRS1F	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
				-
	Para Para		5 6 6 6 6 8 8 8 8 7 CZN • CZN • CZN • CZN • CZN • CZN	
	LETER LETER			-
			
	1 12.33 1 12.31 1 13.31 1 13.31 1 13.31 1 13.31 1	 CUID <li< td=""><td>Image: second second</td><td></td></li<>	Image: second	
4,222.000	11 11 11 11 11 11 11 11 11 11 11 11 11	10000000000000000000000000000000000000		4.222,000
			Z 2 CZ.138 CZ.114 CZ.112 CZ.138	
	изы назана на	С (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)		
	0 Scale 2,000			
	meters			
	Silver One Location Monuments			
4,220,000	Silver One Patented Claims	100		4,220,000
N	Silver One Unpatented / Mill Site Claims	In In Internet		
	Third Party Unpatented Claims	COURS AND MA		
	Third Party Patented Claims	and cont		
	Candelaria Property Outline	NHIT TOHO	The second of the second secon	SILVER SOURCES INC.
		HINGO COUNTY	Noz?	Candelaria Property Mineral and Esmeralda Counties, Nevada, U.S.A.
4.218.000	398,000	404,000	406,000	Figure 4.2: Claim Map with resource outline (red) Scale:1:40.000 Information Source: Silver One 11/24

Figure 4.2: Candelaria Claim Map

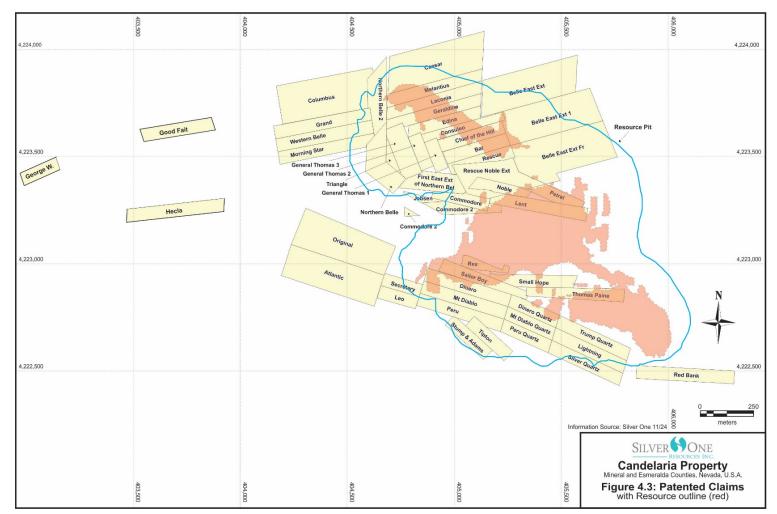
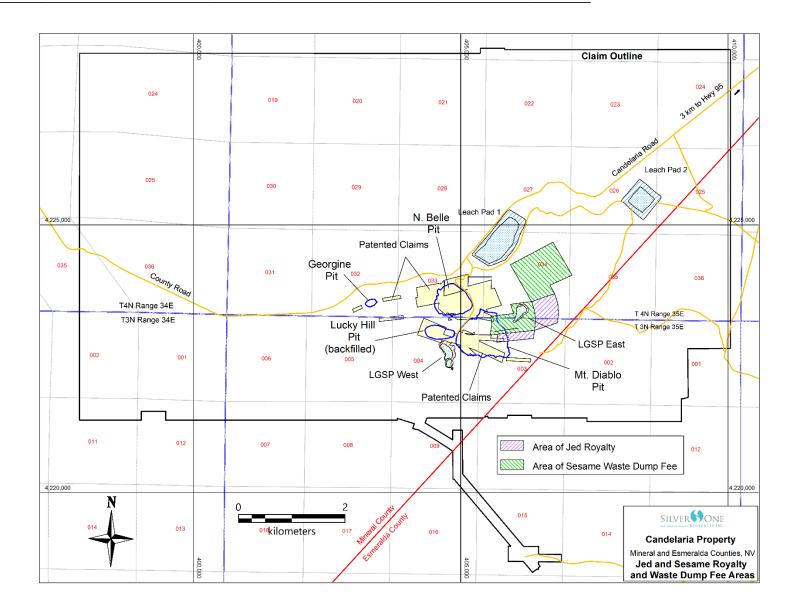



Figure 4.3: Candelaria Patented Claims Detail

Figure 4.4: Candelaria Property showing Jed and Sesame Claims Subject to Royalties

5.0 ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE and PHYSIOGRAPHY

5.1 Accessibility

Vehicular access to the Property is readily possible from the city of Reno via State Highways 80 east to the town of Fernley, southeast via State Highway 50 to the town of Fallon, and then south on State Highway 95 through towns of Hawthorne, Luning and Mina. The paved 6-mile (10 km) property access road joins State Highway 95 approximately 15 miles (24 km) south of the town of Mina and leads southwesterly to the Candelaria mine site. The driving time from Reno to the Property usually takes about 3 hours. See Figure 4.1 and 4.2 of this report.

The Property is also accessible via State Highway 95 north-northwest from Las Vegas. Both Reno and Las Vegas have large airports with many daily domestic and international flights.

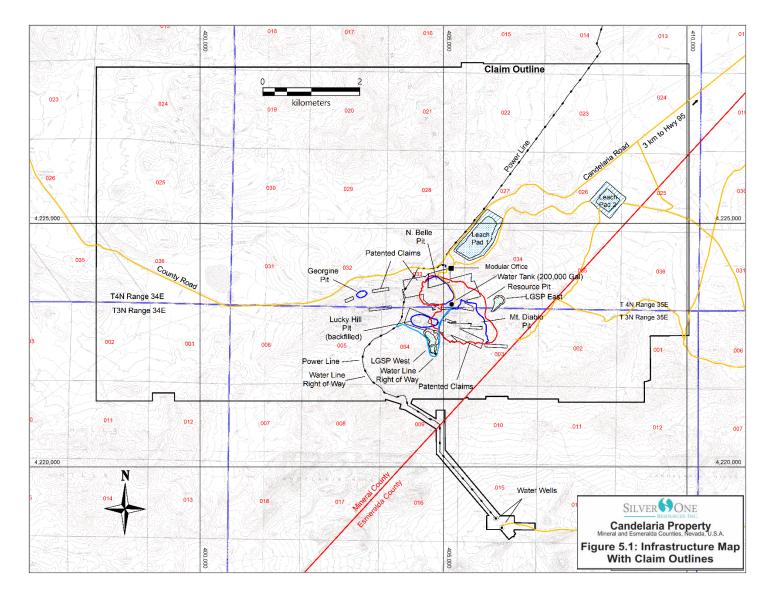
5.2 Climate and Vegetation

The climate is arid to semi-arid, typical of Nevada's Great Basin physiographic province. Daily temperatures commonly range from summer highs in the upper 90's to over 100° Fahrenheit (36-40° C) to winter lows of below 10° Fahrenheit (-12° C). According to Stevens (2001), the total annual precipitation, as measured at the Candelaria Mine between August 1992 and December 1998, averaged 4.23 inches (107.4 mm), and the annual lake evaporation, as measured 22 miles (35.4 km) to the northeast at the town of Mina, typically is 50 to 55 inches (127 to 140 cm). The Candelaria Hills are vegetated predominantly with sagebrush and sparse dry-land grasses.

5.3 Local Resources and Infrastructure

Reclaimed open pits, waste dumps and leach pads are evident from past mining operations. The mine and mill operation buildings were removed and their sites reclaimed by Kinross and SSR. Nevertheless, there are still readily available power and water sources on site with a modular office building. Water is sourced from the mine's two water wells located approximately 6 km (straight line) southwest of the historic plant site (which in turn was located north and adjacent to the Northern Belle pit). Power is supplied by NVEnergy through a 25 Kv line to a substation located at the mine site.

There is sufficient area within the Property for any possible future mining and mineral processing facilities.


Nevada has a long mining history resulting in a large and experienced mining work force. All mining and exploration supplies and equipment are readily available from mining centres such as Tonopah, Hawthorne, Ely and Reno.

Mine Site infrastructure is shown in Figure 5.1.

5.4 Physiography

The Property is situated in the Candelaria Hills with gentle to moderate topography but with locally high relief. Elevations within the Property range from 5,500 to 6,660 feet (1676 to 2030 m) with the mine site at 6,000 feet (1,830 m) above mean sea level ('AMSL')

Figure 5.1: Candelaria Infrastructure Map with Claim Outlines

6.0 HISTORY

The history of the Candelaria Mining District and the mines and prospects within the Property have been well documented by public and private reports.

6.1 Early History – 1863 to 1967

Early history of Candelaria has been summarized by Knopf (1922) and Page (1959) and the history below is summarized from these sources. High grade silver veins at Candelaria were discovered by Spaniards in 1863 and the mining district was formed the same year. Growth of the camp remained limited until the successful development of the Northern Belle mine in the mid-1870's and silver production for the period 1875 to 1883 came primarily from underground development on the Northern Belle vein. Mineralization was mined from narrow high-grade oxidized lodes averaging 50 to 60 ounces per ton of silver. Due to the lack of water at Candelaria, two 20-stamp mills and roasting facilities were built and operated at Belleville, located 13 km (8 miles) to the northwest of Candelaria.

In 1882 a waterline was completed to Candelaria bringing water 43 km from the White Mountains allowing processing facilities to be constructed in the camp. A narrow-gauge railway was completed in the same year. Holmes Mining Co. purchased the Northern Belle mine and Belleville processing facilities in 1984 following a court judgement against the Northern Belle Co. for trespassing. As a result, the Holmes and Northern Belle mines then operated under ownership of the Argentum Mining Co. The Mount Diablo mine started production in 1873 and became a major producer in 1883.

The district declined after 1891 and there appears to have been little activity until 1914. A number of smaller mines, including the Georgine, Potosi, Swastika, Bi-metallic and Lucky Hill mines produced small amounts of ore into the early 1900's. Candelaria Mines Co. developed the Lucky Hill mine in 1920 and operated until 1923. From 1864 to 1954, the district produced an estimated 22 million ounces of silver mainly from Northern Belle, Mount Diablo, Lucky Hill and Potosi. Potosi was reported to have small production from 1947 to 1954 (Page, 1959). No district activity is recorded from 1961 to 1967.

6.2 Development and Production – 1968 to 2017

Drill results from work completed by Congdon & Carey ("CoCa") and Occidental Minerals (together as the OxyMin partnership from 1976) between 1971 and 1979 defined mineable, heap-leachable low-grade Ag-Au mineralization at Lucky Hill and Mt. Diablo with a reserve of 12 Mt averaging 108 g/t Ag and 0.3 g/t Au. Mine construction began in 1979 with production starting in August 1980 at a rate of 25,400 tons per day (ore and waste). The first doré bullion was poured in October 1980.

Nerco Minerals ("Nerco") purchased Oxymin's majority interest in the property after operations at the mine were suspended in 1982 due to low silver prices. Mining operations at Mt. Diablo and Lucky Hill restarted in 1983. Nerco subsequently purchased CoCa's minority interest in October 1983 to become the sole owner of the property. Mining at Northern Belle began in 1985. Combined production from Northern Belle and Mt. Diablo reached 5.5 million tons per year by 1987 with a reported reserve (Moeller, 1987) of 27 Mt averaging 50 g/t Ag and 0.19 g/t Au. Operations were again suspended in 1990 due to low silver prices.

Thomson (1990) reports that a small heap leach operation was conducted at Potosi from 1983 to 1986 by Candelaria Metals Inc.

Kennecott Corporation acquired Nerco in 1993 and subsequently sold 100% of the shares of Nerco Delamar (Delamar Mine) and Nerco Metals Inc. (Candelaria Mine and other assets) to Kinross Gold Corporation.

Kinross resumed mining operations at Northern Belle, Mt. Diablo and the Georgine pit in January 1994. During the first full year of ownership in 1994, Kinross produced 3,207,000 ounces of silver and 12,646 ounces of gold at Candelaria. Development drilling and subsequent mine planning and evaluation were conducted in 1994. Mining at Candelaria (from Northern Belle) ceased in early 1997 with leach operations continuing through early 1999. Reclamation of the Candelaria Mine has been ongoing since 1998. The mine dumps were re-contoured and seeded, and the heap leach piles were rinsed with fresh water and seeded. Other infrastructure has been removed, and the substantial reclamation work has met all state and federal guidelines.

Silver Standard Resources Inc. ("SSR") completed the purchase of Candelaria from Kinross Gold in 2001 for payment of cash and shares and assumption of environmental obligations.

6.3 Drilling and Exploration – 1968 to 2017

The only historic surface exploration documented on the Property has been some surface rock sampling by SSR and drilling by various operators. Historic drilling is described further below.

Superior Oil, Callahan Mining and Congdon and Carey drilled 116 exploration holes totalling 8,432 m (27,664 ft) during the period 1968 to 1972 (Table 6.1). Congdon and Carey drilled an additional three holes totalling 261 m (857 ft) in 1975. The Congdon and Carey (Coca Mines) and Occidental Minerals (OxyMin) joint venture, to explore and develop Candelaria, was formed in 1976. The joint venture conducted extensive exploration and development drilling totalling more than 245 holes between 1976 and 1979.

Akright (1985) states that all drill collars were surveyed in 1978 and although not documented, collars since that date were likely surveyed by a mine surveyor. All drill holes prior to 2017 were surveyed using a local "mine grid" which was derived from the NAD27 Nevada West State Plane Coordinate system.

Few historic drill holes were apparently surveyed downhole. Nerco reported that commencing in 1990, deeper RC holes would be surveyed and twenty-three later Nerco holes and four Kinross holes have documented survey data.

Between approximately 1989 and 1992, Nerco completed 30 rotary holes (N836-838; N847-849; N855-862; N904-916; N962-963; N973-974) on the Green Nick prospect located approximately 1.5 km due east of the Mt. Diablo pit. The best silver intercept was returned from N849 with 16.8 m averaging 66.9 g/t Ag and 0.06 g/t Au.

Between 1990 and 1992, Nerco completed 34 RC holes between 35 and 125 m deep testing the Potosi silver zone (located 600 m southwest of Georgine pit) along strike and above historic workings. Thirty of the holes intersected silver mineralization with the best hole (P18) averaging 127 g/t AgSol over 7.6 m (from 3 m depth).

Table 6.1: Summary of Historic Exploration and Development Drilling at Candelaria

*-Main zones, not all holes are included in the current drillhole database. May include some condemnation drilling.

Company	Holes	No. of Holes	Metres (approx.)	Туре	Year(s)	Location
Superior Oil	C1 – C15	15	1,151	Air rotary	1968	Mainly Mt. Diablo & Lucky Hill
Callahan Mining	C17 – C77	65	3,974	Air rotary	1969	Mainly Mt. Diablo & Lucky Hill; N. Belle
Congdon-Carey	C78 – C116	39	3,575	Air hammer	1971-72	Mainly Mt. Diablo & Lucky Hill
Congdon-Carey	C117 – C119	3	261	Air hammer	1975	Mainly Mt. Diablo & Lucky Hill
OxyMin [‡]	X120 – X288	169	10,700	Air hammer	1976 - 78	Mainly Mt. Diablo & Lucky Hill
OxyMin [‡]	X289 – X318	29	2,000	Air hammer?	1978 - 82	Mainly Mt. Diablo & Lucky Hill
Nerco	319 – 525; N526 – N1001	682	72,296	Rotary/RC	1982 - 93	Mt Diablo & Lucky Hill; other targets
Nerco	NB1 – NB232	232	35,398	Rotary/RC	1984 - 90	N. Belle
Nerco	G1 – G47	47	5,674	RC	1990	Georgine
Nerco	P1 – P34	34	2,528	RC	1990 – 92?	Potosi
Nerco	LP01 – LP36	36	741	Sonic	1992	LP1
Kinross	95DD1-4; 94D5- 10	10	2,096	DDH?	1995	North Mt. Diablo
SSR	N728A – N934A; N786B	10	1,970	RC	1999 - 2000	North Mt. Diablo
Totals		1,371	142,364			

‡ : Metres drilled are estimated only for OxyMin.

As part of their acquisition due diligence, in late 1999-2000, SSR drilled 10 RC holes totalling 1962.9 m in a program that twinned nine historic Mt. Diablo exploration holes located to the north of the Mount Diablo pit. This work confirmed the down-dip continuity of the mineralized zone, however, SSR silver grades were generally lower than historic grades. Neither the SSR holes nor the historic holes had downhole surveys leaving the exact location and proximity of drill intercepts in doubt.

During their due diligence, SSR also recovered 234 historic pulps (14 drill holes) and reanalysed the pulps at Chemex Labs Ltd. (now ALS) in Vancouver (sample prep in Reno) using the same CNsol assay methodology as the mine facility. Analyses were completed on the original -80 mesh pulp and a second assay run was completed on pulp samples pulverized to -150 mesh. In general, the Chemex Ag CNsol -150 pulp results are significantly higher than the original -80 mesh results with means of 81.7 ppm compared to 53.6 ppm Ag respectively. Analyses by Chemex on the original -80 pulps were comparable to the mine results.

Silver One signed an option agreement in January 2017 to purchase 100% of Candelaria from SSR. The property acquisition was completed in May 2023

7.0 GEOLOGICAL SETTING and MINERALIZATION

7.1 Regional Geology

Moeller, 1987, Foster. 1988 and Thomson, 1990 have described regional geology and key aspects of the geology, mineralization and alteration of the Candelaria Ag-Au deposits. Page, 1959 published a geologic map of the Candelaria District that shows relationships between the main lithologies that host mineralization, adjacent lithologic units, faulting, alteration and intrusive rocks. The Candelaria property is located in the eastern Candelaria Hills, Mineral and Esmeralda Counties, NV. (Watkins, 2025)

Mineral and Esmeralda counties, in the west-central part of Nevada, lie within a zone of disrupted structure that forms the transition between the northwest-trending Sierra Nevada province to the west and the north-northeast-trending Basin and Range province to the east.

West-central Nevada has been subjected to multiple episodes of thrusting, regional magmatism and subsequent normal and strike-slip faulting. Figure 7.1 illustrates the position of the Candelaria district relative to pre-Tertiary structure and stratigraphy. Five Paleozoic and Mesozoic thrust sheets, the Roberts Mountain allochthon, Golconda allochthon, Sonoma volcanic arc, Luning allochthon and Pamlico allochthon are recognized.

Permian and Triassic sediments of the Diablo and Candelaria Formations were deposited unconformably on rocks of the Roberts Mountain allochthon, which is comprised of the Palmetto Formation, a thick sequence of Ordovician chert, argillite and dolomite interleaved with slices of Devonian carbonate and calcarenite (Stanley and others, 1977). The Palmetto Fm. Is a tectonic-stratigraphic equivalent of the Valmy and Vinini Formations of central Nevada.

Rocks of the Golconda allochthon, including mafic volcanics and slices of Mississippian to Early Triassic sediments, in a melange of serpentine, were thrust over the Candelaria Fm. during the lower Triassic Sonoma Orogeny. At Candelaria, the Pickhandle Gulch complex of Page (1959) represents the sole plate of the Golconda allochthon.

Candelaria is located within the east-west trending Excelsior-Coaldale block of the Walker Lane belt (Thomson, 1990). The strike of pre-Tertiary units in this area, called the Mina deflection, changes to an east-west direction from the northerly direction typical of much of Nevada.

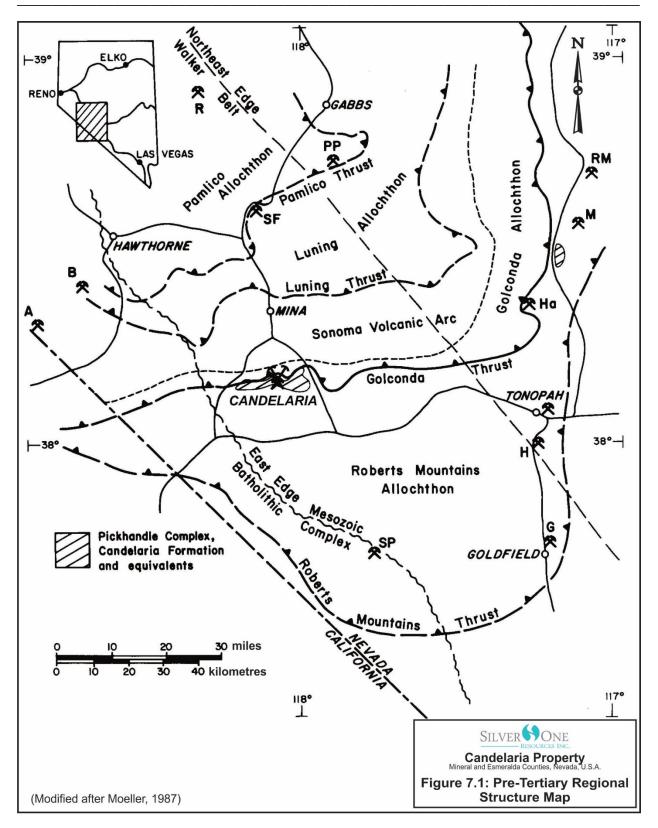


Figure 7.1: Pre-Tertiary Regional Structure Map

7.2 Local and Property Geology

The geology of portions of Mineral and Esmeralda Counties, NV surrounding the Candelaria district are illustrated in Figures 7.2, to 7.5. Pre-Tertiary rock units include the Ordovician Palmetto Fm., Permian and Triassic sediments of the Diablo and Candelaria Formations, the Pickhandle Gulch complex, various rocks of the Golconda allochthon including the Middle Triassic Excelsior Fm., Upper Triassic Luning Fm. and Jurassic-Cretaceous granitic intrusives.

Basement rocks at Candelaria is comprised of thick sequence of chert-argillite-dolomite of the Ordovician Palmetto Formation which is locally interleaved with slices of Devonian limestone and calcarenite although no Devonian rocks occur in the immediate vicinity of the Candelaria property.

Marine sediments of the Permian Diablo Formation and Triassic Candelaria Formation were deposited unconformably on Palmetto Fm. and outcrop along a 19 to 24 km (12 to 15-mile) long, east-west zone roughly centered on the Candelaria deposit. The Diablo Fm. Is a thin, coarse-grained chert sandstone/conglomerate up to 10 m thick that was deposited discontinuously and/or locally eroded to form discontinuous layers on top of the underlying Palmetto Fm. Up to one kilometre of shallow to deeper water marine sediments of the Candelaria Fm. were deposited unconformably on Diablo Fm. or in sharp, angular unconformity with underlying Palmetto Fm. The lower-most Member 1 of the Candelaria Fm. is up to 60 m thick and consists of phosphatic, calcareous and locally carbonaceous mudstone and siltstone w/ thin limestone lenses. Members 2, 3 and 4 are comprised of upward coarsening siltstone, sandstone and pebbly sandstone/conglomerate deposited in deeper water environments. The thickness of Member 2, a less favorable host for mineralization, ranges from 0-300 m.

The Pickhandle Gulch complex in the Candelaria Hills, part of the Golconda allochthon, was structurally emplaced on Candelaria Formation sediments during the lower Triassic Sonoma Orogeny. The complex consists of faulted Mississippian to early Triassic sediments, metasediments and metavolcanic rocks within sheared serpentine. Mafic volcanic and pre-thrust mafic intrusive rocks occur higher in the sequence. Metasediments occur as thrust slices within mafic volcanics and as floating masses within serpentine. Up to 500 m of Pickhandle Gulch complex rocks are present in the area of the Mt. Diablo and Northern Belle pits. The Golconda thrust marks the top of the Pickhandle Gulch complex. Rocks of the Golconda allochthon in thrust contact with Candelaria Fm. in the eastern portion of the property weather to a conspicuous orange color. Volcanoclastic rocks of the Triassic Excelsior Fm., also part of the Golconda allochthon, overlie the Pickhandle Gulch complex.

Upper Triassic limestone, dolomite and shale of the Luning Formation comprise much of the Luning allochthon to the north of Candelaria.

A number of Jurassic-Cretaceous granitic stocks are present in the areas around Candelaria including Miller Mountain to the south, Columbus to the southeast, Redlich and Rock Hill east of Candelaria and Bellville, NW Bellville and Marietta to the northwest. These stocks are interpreted to be younger than the age of silver mineralization at Candelaria.

Moeller (1987) and Thomson (1990) have described intermediate to felsic composition "mine sequence" intrusions that occur as dykes and sills and cut all pre-Tertiary rocks in the Candelaria district. Thomson groups the intrusions into three phases, early aphanitic to sparsely porphyritic felsic dykes and sills that likely pre-date mineralization, medium to coarse-grained intermediate composition porphyries closely associated with mineralization and late, felsic dykes that post-date mineralization and are primarily located east of the Mt. Diablo pit. Emplacement of the dykes and

sills was focused along the east-west trending Pickhandle thrust, the Lower Candelaria shear and within Members 1 and 2 of the Candelaria Fm. Sills are up to 45 m thick and up to 1 km in length. Dykes up to 30 m in width locally cut the Palmetto and Candelaria Formations and are interpreted as feeders for the sills.

Up to 700 m of Oligocene-Miocene ash-flow tuffs, andesitic flows and pyroclastic rocks and Pliocene basalt were deposited on pre-Tertiary rocks of the Candelaria Hills and in the deep, Oligocene basin to the north. Pre-Tertiary rocks were subaerially exposed and eroded between 15 and 4 Ma. as indicated by the local deposition of Pliocene basalt directly on pre-Tertiary rocks. All Tertiary units post-date Candelaria mineralization and alteration.

Faulting in the Candelaria district is grouped into pre- and post-mineral structures. Pre-mineral thrust faulting and related shearing created favorable zones for the emplacement of mine sequence intrusives and silver mineralization. The Pickhandle thrust forms a sharp break between Candelaria Fm. sediments in the footwall and the strongly sheared and altered melange of metasediments, metavolcanics and serpentine in the hanging wall. Much of the deformation is in the lower 40 m of the thrust plate due to the incompetent nature of serpentine (Moeller, 1987), The thrust is generally parallel to bedding in sediments of the Candelaria Fm., dipping from 20 to 75 degrees to the north. The Lower Candelaria shear ('LCS') is a thrust-related zone of shearing within the lower part of Candelaria Fm. Member 1. Present throughout the district, the shear ranges in thickness from 1 to more than 30 m and generally dips from 20 to 60 degrees to the north. High-angle, north and northwest-striking faults that extend upward from the Lower Candelaria shear may be important in focusing mineralization in stratigraphic horizons of the Candelaria Fm. above the LCS (Warner, 1991).

Mineralized and altered pre-Tertiary rocks in the Candelaria Hills are exposed along the eastwest trending Candelaria horst, bounded on the north by the north-dipping Candelaria fault and on the south by the southeast-dipping Alpha fault. Both faults place Quaternary and Tertiary rocks against pre-Tertiary rocks of the Palmetto, Diablo Fm., Candelaria Fm. and Pickhandle Gulch complex. East of Pickhandle Gulch, the north-dipping County Line fault places Quaternary and Tertiary rocks against pre-Tertiary rock in a similar fashion. The three high-angle faults have respective dips of approximately 60 degrees. The east-northeast striking East Diablo, Bigfoot, Zeta and Delta faults are in the Mt. Diablo pit. The faults dip 50 to 80 degrees to the southeast. Post-mineral displacement of Lower Candelaria shear mineralization ranges from 15 to 100 m of downward movement in the hanging wall of the faults.

TECTONIC UNIT	ROCK TYPE	AGE	CESCRIPTION ·	DISTRIBUTION IN DISTRICT
	80.000	Q	Quaternary Surficial deposits	
		т	Thick sequence of dacitic to rhyolitic ash flows and tuffs with minor thin basaltic flows.	Throughout Candelaria Hills; thickest section north of Candelaria fault.
Golconda Alloch.		M-Ŧ	Monotonous sequence of calc- areous mudstone, ss., chert and thin dolomite. Conspicuous orange weathering color	Discontinuous 22-mile east- west belt, Rock Hill to Little Huntoon Valley Ouadrangles
Pickhandle Allochthon		M-Ta	Melange of mafic volcanics limestone, chert and dolo-, mitic rocks in a serpentine matrix	13 mile east west belt in the Candelaria and Bellevill Quadrangles
Candelaria-Diablo Autochthon	2, 1 2 3 2 3 4 3 0 3 1 0 2 3 4 3 0 3 1 0 2 3 4 3 0 4 3 1 0 2 3 4 3 1 0 2 3 0 4 3 1 0 2 3 4 3 1 0 2 3 0 4 3 1 0 2 3 1 0 2 3 1 1 0 2 3 1 0 2 3 1 0 2 3 1 1 0 2 3 1 1	Ŧ	Candelaria Formation- st and thin ls at base (I) grading upward to a thick sh-st unit (II)and a feldspathic ss, st, cgl sequence (III)	12 mile east-west belt in southern Candelaria, Belleville, and Rock Hill Quadrangles
		Pm	Diablo grit- coarse ss with angular chert grains	15 mile east-west belt (discontinuous)
Roberts Mountain Allochthon		0 . D . 0	Deformed chert-argillite sequence (Ordovician Pal- metto Fm.) with structurally interleaved calcarenite (Probably Devonian)	Palmetto throughout southern tier of quadrangles. Devonia on north flank of Miller Mt. and small areas in the Basalt Quadrangle
		с	Campito, Harkless, and Poleta Fms.; marble and siliceous hornfels	Southern face of Miller Mt.

From Thompson, 1990. After Moeller, 1985.

Figure 7.2: Tectonic Stratigraphic Column for the Candelaria Hills

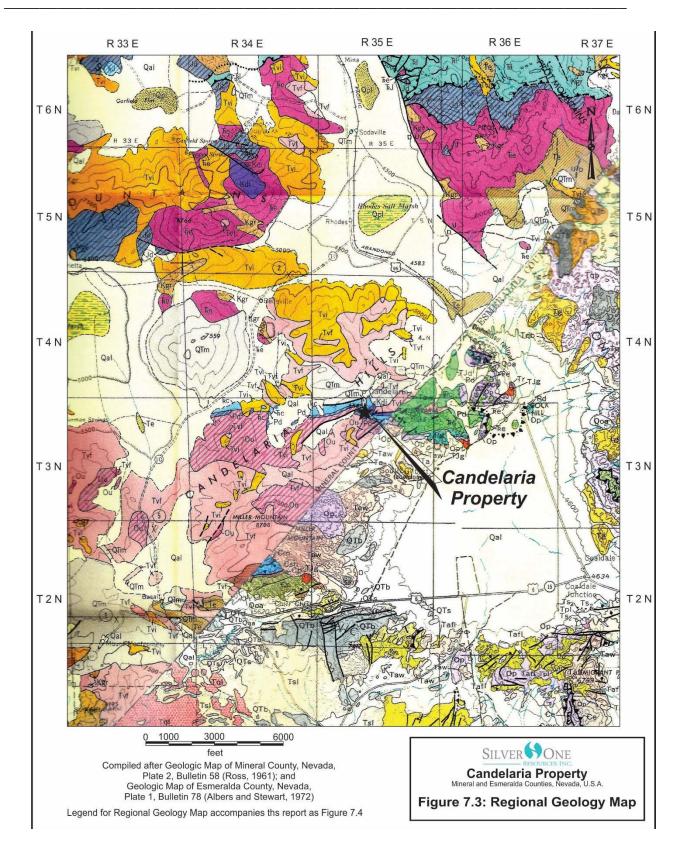


Figure 7.3: Regional Geology Map - Mineral and Esmeralda Counties

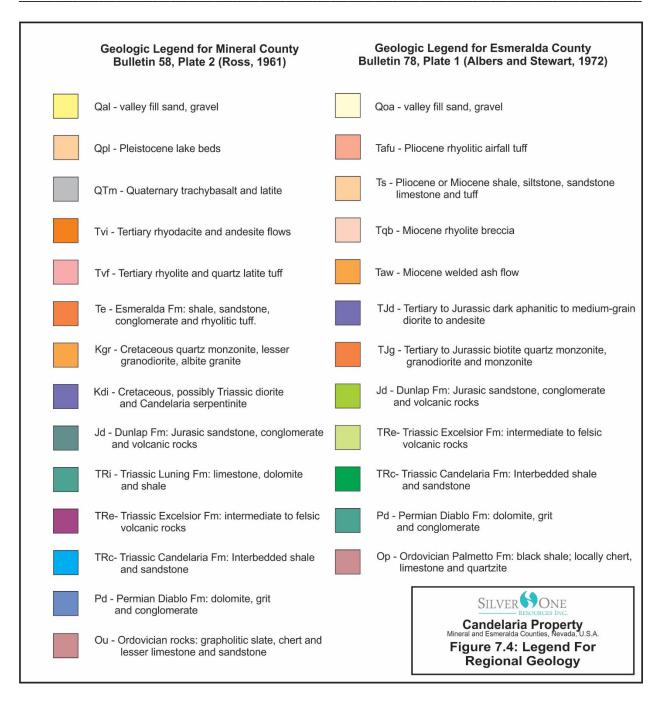


Figure 7.4 Legend for Regional Geology Map

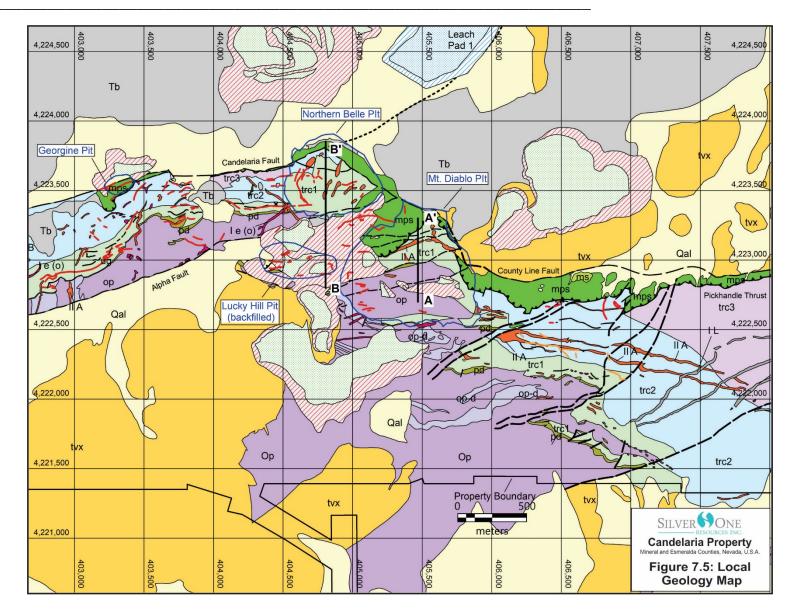


Figure 7.5: Property Geology Map

	Heap Leach Pads
	Waste Dumps
	High-Angle Fault
Quate	ernary
Qal	Alluvium
Qgrav	Gravel
Tertia	
Tb	
tvx	Tertiary Volcanic Rocks (Undivided)
	ceous
sk	Skarn
IL	Late Felsite Dykes
Ш	Intermediate Dykes
l e (y)	Early Intermediate Dykes
IIB	Type II B Porphyry Dykes
IIA	Type II A Porphyry Dykes
l e (o)	Early Felsite Dykes
kg	Cretaceous / Jurassic Granite
	ssippian - Triassic _{Ida Allochthon}
trx1	Mudstone, ss, chert, dolomite
	Golconda Thrust
Pickha ms	ndle Allochthon Metasedimentary Rocks
msp	Melange of metasediments, metavolcanics and meta-intrusive rocks in a serpentine matrix
	Pickhandle Thrust
Triass	ic
	Excelsior Fm. (Undivided)
trc3	Candelaria Fm. (Member 3) - sandstone, pebbly ss
trc2	Candelaria Fm. (Member 2) - tan mudstone, siltstone
— ×	Candelaria Fm. (Upper Grit) - coarse sandstone
trc1	Candelaria Fm. (Member 1) - gray to lilac, thin bedded, calcareous mudstone, minor carbonate
Permia	an
pd	Diablo Grit - med to coarse-grained sandstone
Missis Mc	sippian ? Dolomite (Possible Diablo Grit Dolomite)
Ordovi	cian
op-d	Palmetto Fm Dolomite
ор	Palmetto Fm Chert, Argillite

Figure 7.6: Legend for Property Geology Map

7.2.1 Mineralization

Silver-gold-lead-zinc (± Antimony ± Arsenic) mineralization at Candelaria occurs primarily along thrust- related structures including the Pickhandle thrust and the Lower Candelaria shear. Silver One geochemical analyses of drill core and cuttings show a close association between Ag-Au mineralization and cadmium. According to Moeller (1987), 65 percent of open pit mineralization is in the lower half of Member 1 of the Candelaria Fm. deformed by the Lower Candelaria shear, approximately 25 percent are controlled by the Pickhandle thrust and parallel structures with the remaining 10 percent hosted by mine sequence intrusives and their contact zones with pre-Tertiary wall rocks. Bulk-mineable mineralized zones are primarily tabular, sheet-like bodies that dip 20-75 degrees to the north and are generally parallel to stratigraphy or controlling faults. Historically, the Mt. Diablo, Northern Belle and Lucky Hill pits comprised the bulk of economically mineable mineralization. Original, high-grade veins mined in the late 1800's and early 1900's occur within this same area. The smaller Georgine pit is located 1.5 km west of Northern Belle (Fig 7.5). Age dates reported by Moeller (1987) and Thomson (1990), referencing Silberman (1975) include 126 Ma on hydrothermal sericite and measurements of 127 Ma. and 131 Ma on a sericitized porphyry dyke. Subsequent weathering and oxidation of the mineralized zone occurred during two distinct periods of time. The first was during a late Cretaceous to early Tertiary erosional event, after which the paleo-erosional surface was capped by younger volcanic rocks. The second followed the Tertiary to Recent erosional period during which the mineralized zones were again exposed at the surface. Partial to complete oxidation of the deposits extends to depths of 200 m.

Mineralization in the Lower Candelaria shear is best developed in the Mt. Diablo pit area where boundaries of higher-grade mineralization closely match the limits of the shear zone. . In some areas, the shear zone is at the base on Member 1 of the Candelaria Formation where deformation was focused immediately above the massive Diablo Formation. In other areas it is as much as 20 m above the base of Member 1, but is always lower than the upper grit, a cherty fragmental marker bed similar to the Diablo Fm. The shear is thickest, up to 35 m, where the Pickhandle thrust is within 100 m of Candelaria Member 1 sediments. Lower grade mineralization extends 50 to 150 m upward from the top of the Lower Candelaria Shear into upper Member 1 sediments, mine sequence intrusives and rocks of the Pickhandle Gulch complex. Within and marginal to the Lower Candelaria Shear zone are irregular and discontinuous high-grade lenses and shoots of more massive iron and manganese-iron oxides with dolomite and quartz gangue. These high-grade zones were the focus of early underground mining and consisted of lenses and shoots <1 m to 3 m (2 to 10 feet) thick, with continuity along strike of up to 30 m, and dip extents of several hundred metres. Many of the high-grade lenses may be the due to the replacement of narrow limestone beds that occur in Member 1 of the Candelaria Formation (Thomson, 1990).

Oxidized LCS is characterized by sheared, broken and rotated blocks of strongly sericitized Candelaria Fm. sediments, mine sequence intrusives, iron oxides of hematite, limonite and jarosite, manganese oxides, oxides of lead, zinc and antimony and local preserved sulphides of pyrite and sphalerite. Mineralization is partially or completely oxidized to a depth of 200 m. Silver to gold ratios average 400:1.

Unoxidized LCS is comprised of quartz and dolomite stockwork veining in sheared, broken and rotated blocks of carbonaceous Candelaria Fm. sediments, mine sequence intrusives and lenses of pyrite and sphalerite sulphide mineralization. Pyrite is by far the dominant sulphide. Jamesonite, tetrahedrite, stibnite and acanthite occur as inclusions in pyrite and/or quartz.

In the Northern Belle and Lucky Hill pits, mineralization is best developed along the Pickhandle thrust. At Northern Belle, multiple sub-parallel zones of mineralization occur in rocks of the Pickhandle Gulch complex and at the thrust contact between the Pickhandle Gulch complex and underlying, sheared Candelaria Fm. sediments and mine sequence intrusives. Abundant quartz veining is not present at Northern Belle. Although Moeller (1987) and Thomson (1990) report that the LCS at Northern Belle and Lucky Hill is generally less than 3 m (10 feet), drill hole logs describe thicker intervals of mineralization in lower Candelaria Fm. sediments that are similar to LCS. Sills up to 50 m thick emplaced along the Pickhandle thrust are often mineralized. Lower grade mineralization extends 50 to 75 m below the Pickhandle thrust into Candelaria Fm. and mine sequence intrusives in the Northern Belle pit, Mineralization at Lucky Hill occurs as relatively narrow zones along the Pickhandle thrust.

Depth of oxidation at Northern Belle ranges from 100 m east of the Northern Belle shaft (located near east margin of pit) to 200 m west of the shaft. The increased depth of oxidation west of the shaft is interpreted to be due to greater structural preparation related to the position of the Pickhandle thrust and high-angle northwest striking faults within the pit relative to the location of the shaft.

Silver grades from the open pit operations have typically ranged from 70 to 2275 g/t Ag (2 to 8 oz/T), with local areas of higher grade in excess of 1,700 g/t. Chavez and Shrestha (1987) report that 95 percent of total silver occurs as native silver and cerargyrite. Native silver rims and possibly replaces cerargyrite (Chavez and Shrestha, 1988). Thomson (1990) states that the remaining silver probably occurs in rare phases such as pyrargyrite (ruby silver). Foster (1988) observed inclusions of arsenopyrite, gersdorfite, jamesonite, tetrahedrite, tennantite and pyrrhotite in pyrites from Lucky Hill

District-scale metal zoning, possibly unrelated to lithology, was recognized by Page (1959). Ag:Au and Zn:Pb ratios are generally higher at Mt. Diablo and eastward. In the western part of the district, Pb, Au and Sb are relatively more abundant. Horlocker (1981) documented the westward increase in Pb:Zn across the Mt. Diablo - Lucky Hill area. Higher Cu values, evidenced in part by copper-tourmaline veins, occur west of the Northern Belle pit.

Figure 7.7 illustrates important geologic settings and distribution of Ag mineralization in the Mt. Diablo, Northern Belle and Lucky Hill pits. Northern Belle is interpreted to be a northerly or westerly depth extension of Lucky Hill mineralization. According to Moeller (1987), reconstruction of Candelaria mineral occurrences along post-mineral faults indicates the main orebodies were once contiguous. The mineralized zones comprise a continuously mineralized area 4.6 km along strike with a minimum down dip extent of 1200 m, all within a structural - stratigraphic package no more than 120 m thick.

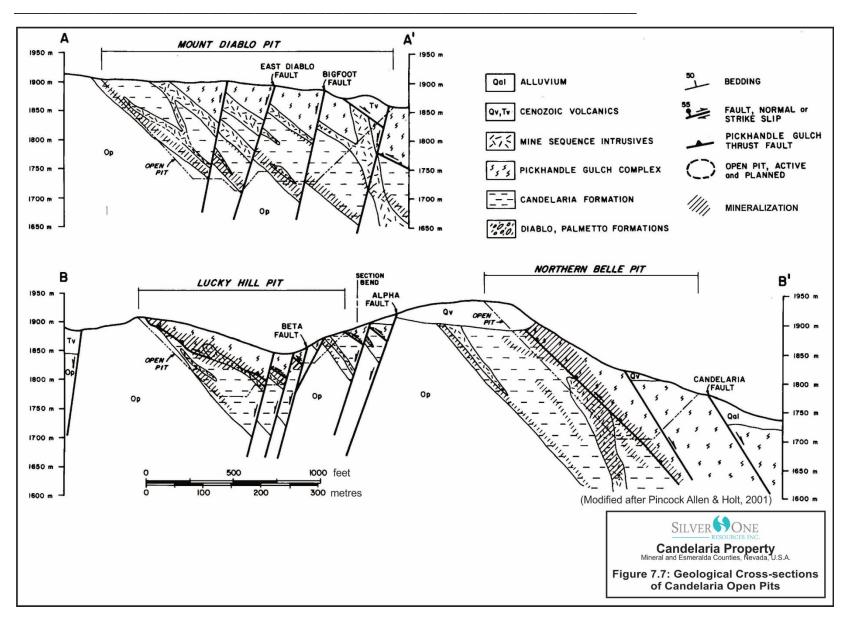


Figure 7.7: Geological Cross-Sections Candelaria Open Pits. See Fig. 7.5 for section location

8.0 DEPOSIT TYPES

A number of previous workers have contributed important descriptions and interpretations of the geology and mineral deposits of the Candelaria district including Burgess (1922), Knopf (1922), Page (1959), Moeller (1987), Foster (1988) and Thomson (1990). Moeller defined Candelaria as an epigenetic, structurally controlled Ag-Pb-Zn deposit genetically related to a suite of pre- to synmineralization Mesozoic intrusives. Thomson places the age of these mine-sequence intrusives ranging from Mid-Jurassic (early Type Ie(o) felsite) to Early Cretaceous Type II porphyries and to Mid-Cretaceous Type II felsite. Foster proposed that Candelaria is the upper levels of a granodiorite molybdenite system with hydrothermal fluids focused in structurally prepared carbonate-bearing and carbonate-altered rocks of the Candelaria Fm. and Pickhandle Gulch complex.

Cox (1990) included Candelaria in their descriptive model of disseminated Ag-Au deposits where disseminated Ag and Au mainly occur in sedimentary rocks distal to porphyry Cu, skarns and polymetallic veins. Typical deposits include Taylor, Star Pointer, Cove and White Pine (NV); Tecoma (UT) and Vekol, Tombstone and Hardshell (AZ). The model is similar to sediment-hosted Au but is distinguished by significantly higher Ag grades and higher geochemical background values. Primary commodities are silver and gold. Antimony occurs locally. Associated deposit types can include Cu porphyry, Cu skarn, Pb-Zn skarn, Au skarn, polymetallic veins, polymetallic replacement and replacement Mn deposits.

Regional Geologic Attributes

- Tectonostratigraphic Setting: Continental margins.
- Depositional Environment: Carbonate and clastic sedimentary rocks.
- Age Range: Mesozoic-Tertiary in Western United States; may be any age.

Local Geologic Attributes

- Host Rocks: Carbonate and clastic sedimentary rocks.
- Associated Rocks: Felsic hypabyssal or subvolcanic intrusions.
- Economic Mineralogy: Native Au, native Ag, electrum, argentite, Ag sulfosalts, tetrahedrite, stibnite, galena, sphalerite, chalcopyrite, pyrite, marcasite, arsenopyrite; at Cove, stannite and canfieldite.
- Gangue Minerals: Quartz, rhodochrosite, Ag-rich manganocalcite.
- Structure and Zoning: Economic minerals sparsely disseminated or in stockwork of thin quartz-sulphide veins.
- Mineralization Controls: Deposits commonly occur in skarn and polymetallic vein and replacement districts outboard of all other types of mineralization. Fracture permeability is the most important mineralization control. Primary rock permeability may be important locally.
- Structural Setting: Shear zones, axial plane fractures in folded rocks.
- Deposit Geometry; Irregular bodies, locally conformable to bedding.
- Alteration: Silicification (Taylor, Star Pointer, Cove); decalcification of carbonate rocks (Star Pointer); sericite-clay in clastic rocks (Candelaria).

- Effect of Weathering: Leaching and re-deposition of Ag as cerargyrite forms bonanza deposits (White Pine, NV; Vekol, AZ.
- Geochemical Signatures: Ag ± Au ± Pb ± Mn ± Zn ± Cu ± Sb ± As ± Hg ±Te; Mn introduced at Cove, Candelaria and Star Pointer. Ag: Au ratios are highly variable: Candelaria 400:1; Taylor 143:1; Tecoma, 60:1; Purisma Concepción, 51:1; Hilltop, <2:1.

Structural preparation, carbonate-bearing sediments (Member 1 - Candelaria Fm.) or carbonate alteration (Pickhandle Gulch complex) and intrusion of intermediate to felsic composition dykes and sills provided the primary controls on mineralization. Sheared rocks along and adjacent to the Pickhandle thrust and Lower Candelaria shear hosted as much as 90 percent of Ag-Au mineralization produced from historic open pit operations at Candelaria. The Pickhandle thrust and the Lower Candelaria shear are largely conformable to bedding in Candelaria Fm. sediments. Calcareous and carbonate-bearing sediments and carbonate altered rock within these structures were favourable horizons for replacement-style mineralization. The remaining 10 percent of mineralization.

Oxide mineralization is characterized by strong quartz-sericite alteration, iron oxides of hematite, limonite and jarosite, manganese oxides, oxides of lead, zinc and antimony and local preserved sulphides of predominantly pyrite and sphalerite. Unoxidized mineralization is comprised of quartz-dolomite-sulphide stockwork veining and lenses of pyrite and sphalerite. Pyrite is by far the dominant sulphide. Jamesonite, tetrahedrite, stibnite and acanthite occur as inclusions in pyrite and/or quartz.

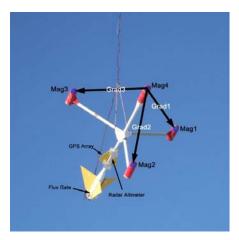
Native silver and cerargyrite reportedly comprise 95 percent of Ag mineralization at Candelaria. Native silver rims and possibly replaces cerargyrite (Chavez and Shrestha, 1988). Thomson (1990) states that the remaining Ag probably occurs in rare phases such as pyrargyrite (ruby silver). Foster (1988) observed inclusions of arsenopyrite, gersdorfite, jamesonite, tetrahedrite, tennantite and pyrrhotite in pyrites from Lucky Hill.

The primary geochemical signature at Candelaria is Ag-Au-Pb-Zn (\pm Sb \pm As \pm Cd). Copper is present but is a minor constituent in Ag mineralization. The Ag-Au ratio averages 400:1 but ranges from 700:1 in mineralization hosted by the Lower Candelaria shear to 200:1 in the mineralized portions of the Pickhandle Gulch complex.

Occurrences of coarse chalcopyrite in with sphalerite, galena and pyrite in skarn, anomalous Pb-Zn mineralization in skarn and anomalous, disseminated Cu-As mineralization in felsic and porphyritic intrusives in the western part of the district support the proposed model.

Regional exploration should focus on the east-west trending Candelaria basin where it is overthrust by the Golconda allochthon. Triassic Candelaria Fm. and Permian Diablo Fm. outcrop along a strike length of 22 km. Geological mapping of Mineral County, NV compiled by Ross (1961) shows an outcrop of Candelaria Fm. that extends the strike length of potentially favorable host sediments an additional 13 km to the west. Rocks of the Pickhandle Gulch complex outcrop along a strike length of 11 km in the Candelaria Hills. However, the leading edge of the east-west trending portion of the Golconda allochthon extends for 130 km from the Sierra Nevada to the Mina deflection. Exploration of this area is warranted based on the possible presence of buried, mineralized Candelaria Fm. beneath the thrust plate, particularly where Jurassic-Cretaceous intrusives are also present.

Within the Candelaria property, exploration targets are prioritized based on anomalous Ag-Au-Pb-Zn-Sb-Cd \pm As \pm Cu geochemistry and anomalous IP (chargeability) response in Candelaria Fm. Member 1 coincident with zones of low resistivity.


9.0 EXPLORATION

Exploration conducted by previous operators is summarized in the History section of this report. The exploration conducted by Silver One since 2017 includes drilling (45 sonic drill holes, 77 reverse circulation (RC) and 15 diamond drill holes (reported in the drilling section of this report), Airborne magnetometry and ground induced polarization ("IP") geophysical surveys (reported below), as well as surface rock sampling and geologic mapping.

9.1 Magnetometry

In August 2019 Silver One Resources Inc. contracted SHA Geophysics Ltd. to carry out Heli-GT helicopter-towed aeromagnetic three-axis gradient surveys over its Candelaria project. Equipment and crew mobilized to El Aero Helicopters in Carson City Nevada on September 27th, 2019. During a three-day period between September 28th - 30th, 2019 a total of 809 km of data was collected over the project area.

The survey was conducted in north-south oriented lines, with a 100-meter spacing and 40-meter terrain clearance (sensors) and east-west oriented control lines spaced 1,800 meters. All of the geophysical and ancillary equipment is housed in a towed bird designed by SHA Geophysics Ltd., manufactured from non-magnetic FRP. The Heli-GT bird is towed 25 m below the helicopter (image below).

Four Scintrex CS-3 cesium sensors are arranged in an orthogonal array with 3 m sensor separation from the nose sensor to those at the end of each arm of the bird. The Heli-GT bird was flown at a nominal altitude of 30m.

The geophysical survey was very successful in identifying new targets not previously identified as well as in mapping structures that may be important controls to the silver mineralization. Preliminary results illustrate that mineralized structures present at Diablo, Northern Belle and Georgine, continue 4 km farther to the east and west of the Diablo and Georgine pits respectively. Results also reveal a large magnetic high with a geophysical signature consistent with iron-oxide, copper-gold ("IOCG") deposits. This feature constitutes a major target 5 km long and 1.5 km wide represented by the red area north of Georgine pit (Figure 9.1).

Further data processing using magnetic vector inversion ("MVI") reveals a series of anomalies interpreted as apophyses (near-surface extensions to potentially mineralized, larger intrusive bodies at depth) and alteration possibly associated with porphyry-style mineralized systems.

Depth of these anomalies are interpreted by the geophysical metal factor ("MF") and MVI data to vary from near surface (100 m) to over 1,000 meters. These anomalies also form part of the target anomalies shown in Figure 9.2. MVI anomalies were followed up with IP surveys that cover the entire property.

9.2 Induced Polarization ("IP") surveys

Induced Polarization/Resistivity surveys were conducted at the Candelaria Project by Zonge International in three phases during 2020 to 2022. A total of 75,200 meters were surveyed in 13 lines with an average spacing between lines of 1km and dipole length (spacing) of 300 m. The survey was conducted in north-south oriented lines, except for line 5 oriented at a 40 degrees azimuth, using a 30 kva transmitter. Line locations are shown in Figure 9.2.

An IP survey revealed strong IP and metal factor (MF) anomalies, (low resistivity and high chargeability) around the Candelaria historical resource area. MF anomalies persist down-dip from the mineralized pits, suggesting continuity of mixed (oxide-sulphide) and sulphide mineralization beyond the limits of the historic Mount Diablo and Northern Belle resource areas. Similar MF values continue east and west from the Northern Belle and Diablo pits to the Green Nick prospect to the east, to the area south of the Georgine pit, and to the Red Hill showing to the west of the pits (see Figure 9.3).

9.3 Rock Sampling

Silver One has collected 1,157 surface rock samples on the Candelaria property which is in addition to 204 samples collected by SSR prior to 2017. Most samples are selected grabs and chips and analytical details are given in Section 11.2.5. Samples were collected along strike up to 4.3 km west of the pits and up to 3.7 km to the east. Most anomalous results overlie Candelaria Fm., Palmetto Fm., Pickhandle Fm. and minor mine sequence intrusive rocks.

The results reveal several clusters of high silver, gold, copper and other trace elements which delineate significant anomalies. Lead and antimony are closely associated with silver mineralization at surface in the pit areas where bindheimite, a lead-antimony oxide, occurs at Northern Belle, Lucky Hill and the Potosi Mine (Knopf, 1922; Page, 1959). The Pb-Sb association provides a useful surface geochemical signature in this deeply oxidized environment where other metals such as Zn and Cu may be leached. Sample distribution and geochemistry for Ag, Pb and Sb are shown in Figure 9.4.

Around the historic open pits, the surface assays have expanded the footprint of the mineralization at least 2 km east of the Mt. Diablo pit, 1 km west of the and 500 m west of Georgine pit. Other relevant targets identified to date include the Red Hill target (where four rock chip samples report copper grades between 0.7% and 1.5% over widths between 1 to 1.5 meters), the Green Nick target (where multiple assays from select rock chip samples report highly anomalous gold between 0.20 to 0.88 g/t, silver between 84 to 585 g/t, and copper between 397 to 1,526 ppm), and the Georgine target located south of the Georgine pit (with gold values between 0.55 to 2.78 g/t, silver between 215 to 557 g/t and copper between 0.1 to 4.5%).

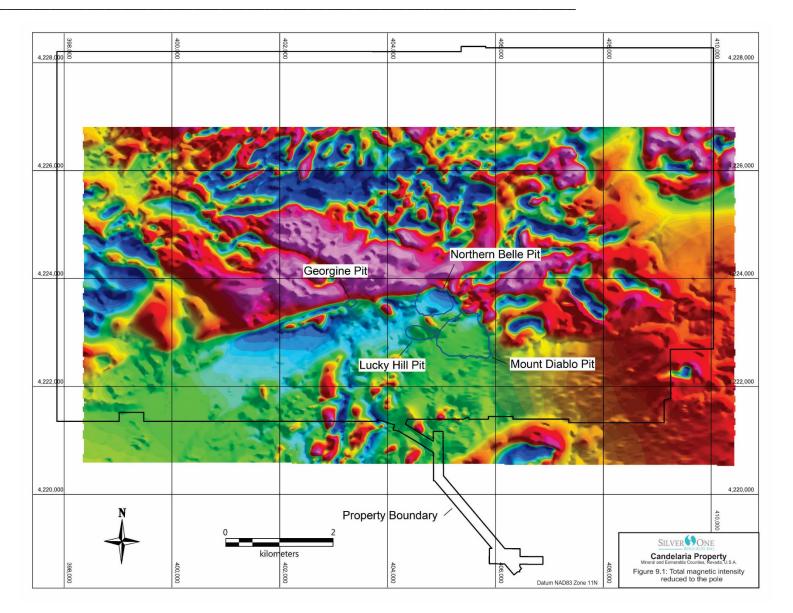


Figure 9.1: Total magnetic intensity reduced to the pole - Candelaria project, Nevada

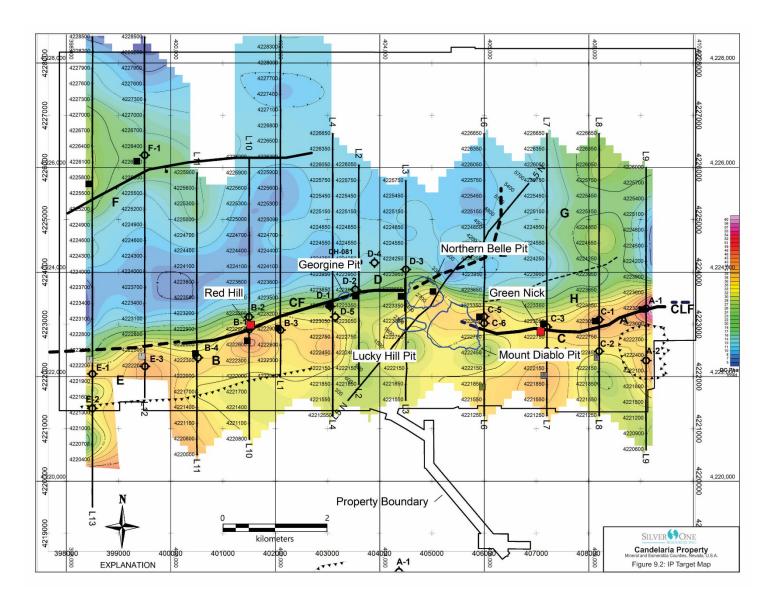


Figure 9.2: IP Target Map - Candelaria project, Nevada

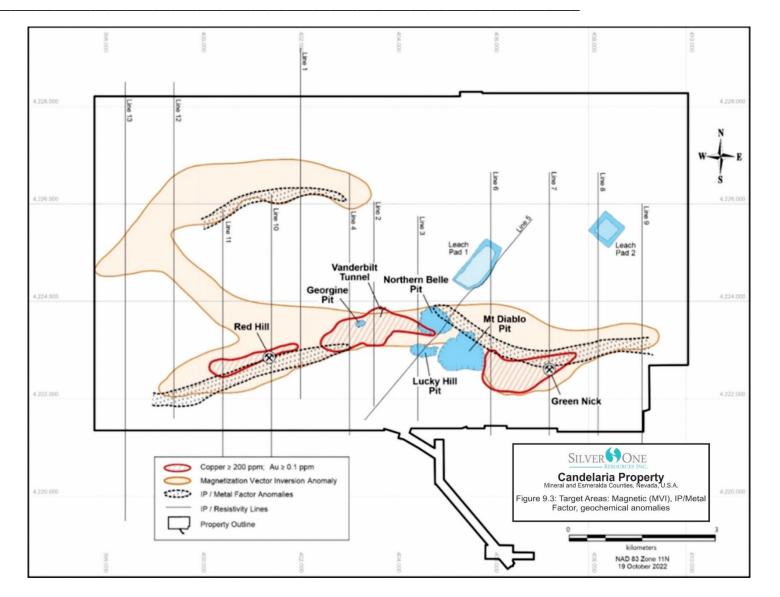


Figure 9.3: Target Areas: Magnetic (MVI), IP/Metal Factor, Geochemical anomalies - Candelaria Nevada

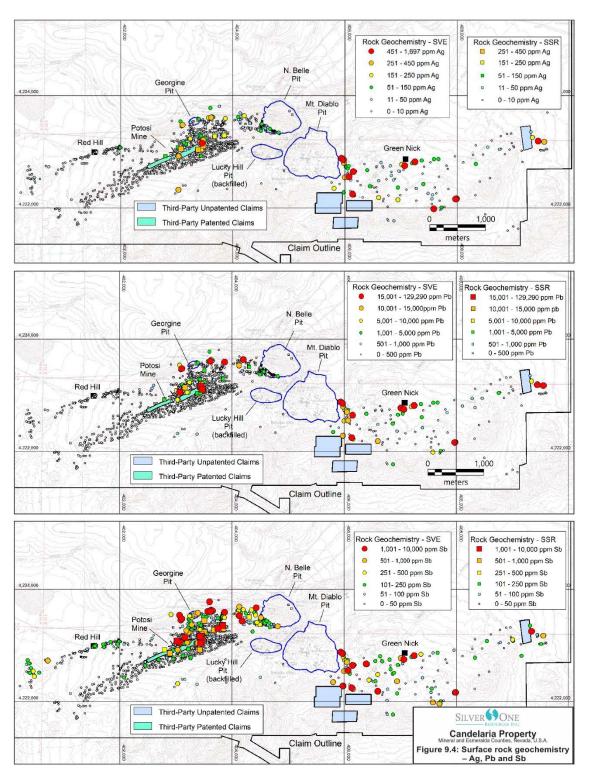


Figure 9.4: Candelaria Surface Rock Geochemistry – Ag, Pb and Sb (ppm)

10.0 DRILLING

The Candelaria property has seen four drill programs carried out by Silver One since 2017. Silver One completed sonic drilling of the heaps and low-grade stockpiles and RC and diamond drilling in the Mount Diablo and Northern Belle areas.

10.1 2017 Sonic Drill Program

Silver One completed a sonic drill program in November and December 2017 on the Candelaria property. The program involved drilling holes on the leach pads and low-grade stockpiles including: 17 holes on Leach Pad #1 ("LP1"), 10 holes on Leach Pad #2 ("LP2"), 16 holes on the stockpiles and two holes on dump material left over from previous operations. A total of 1112.1 m was drilled in 45 vertical holes. Drilling was conducted on a 200-metre spacing rectangular grid with a hole in the center (providing a nominal spacing of 141 metres to 200 metres between drill holes) on LP1, a 100-metre grid on LP2, and a 50 to 75 metre spacing grid on the stockpiles.

The Sonic drilling program was carried out using a Boart Longyear Sonic Drill. The drill rig was track mounted and used 3 m rods with a 20.3 cm (8 inch) outside diameter and a core tube with a 15.25 cm (6 inch) inside diameter. Sonic drilling core consists of typical heap material including varying amounts of fines and crushed rock with size fractions, generally ranging from 0.5 inches to 4 inches. These were placed into 6" (15.25 cm) diameter plastic bags and sealed with plastic ties at 1 to 2 feet long sections at the rig prior to transporting to the secure sampling facility for logging and sampling.

Detailed descriptions of the sonic drill core were carried out under the supervision of a Silver One's senior geologist. The logging and sampling were carried out on-site in a dedicated core logging/storing facility. Drill log data were recorded onto paper logs that were later digitized. The 2017 sonic drill hole collars are shown in Figure 10.1 with the collars from 1992 sonic drill holes by NERCO. Drill collars from the 2017 sonic drilling are listed in Table 10.1 (NAD83 11N). Results of the 2017 sonic drilling are listed in Table 10.2.

There are no known drilling, sampling or recovery factors that could materially impact the accuracy and reliability of these results. The drilling was performed on heap leach pads with vertical holes so the intervals in Table 10.2 are true widths for the material laying on the leach pad. The crushed material on the leach pads has no orientation in terms of mineralization. There were no significantly higher-grade intervals noted in the drill results.

HOLE-ID	LOCATIONX	LOCATIONY	LOCATIONZ (m)	LENGTH (m)	ZONE
SO-C-17-001	405888.90	4225134.86	1699.49	33.83	LP1
SO-C-17-002	406041.04	4225010.12	1694.39	32.61	LP1
SO-C-17-003	405900.92	4224997.23	1699.09	32.00	LP1
SO-C-17-004	405759.58	4224984.09	1696.00	24.08	LP1
SO-C-17-005	405910.87	4224855.86	1698.45	29.57	LP1
SO-C-17-006	405770.06	4224843.08	1692.89	20.12	LP1
SO-C-17-007	405632.77	4224832.40	1696.23	18.59	LP1
SO-C-17-008	405784.85	4224703.25	1696.78	22.25	LP1
SO-C-17-009	405642.77	4224690.76	1702.28	21.95	LP1
SO-C-17-010	405797.30	4224560.58	1698.25	21.95	LP1
SO-C-17-011	405501.19	4224678.37	1706.33	20.42	LP1
SO-C-17-012	405654.23	4224550.62	1705.07	22.25	LP1

Table 10.1: Candelaria 2017 Sonic Drill Hole Collars (UTM NAD83 11N)

HOLE-ID	LOCATIONX	LOCATIONY	LOCATIONZ	LENGTH	ZONE
SO-C-17-013	405515.36	4224536.08	1711.24	22.25	LP1
SO-C-17-014	405667.92	4224406.66	1709.47	21.95	LP1
SO-C-17-015	405372.08	4224526.37	1714.71	19.51	LP1
SO-C-17-016	405530.90	4224402.74	1714.63	20.73	LP1
SO-C-17-017	405386.53	4224383.26	1716.42	13.11	LP1
SO-C-17-018	408319.72	4225635.64	1652.41	28.35	LP2
SO-C-17-019	408398.07	4225568.67	1654.22	28.04	LP2
SO-C-17-020	408475.88	4225504.03	1655.24	28.04	LP2
SO-C-17-021	408258.48	4225556.42	1655.15	27.13	LP2
SO-C-17-022	408334.13	4225491.74	1657.48	29.26	LP2
SO-C-17-023	408411.87	4225428.04	1659.03	27.74	LP2
SO-C-17-024	408490.88	4225363.90	1659.78	27.13	LP2
SO-C-17-025	408194.48	4225476.58	1660.27	28.35	LP2
SO-C-17-026	408270.47	4225383.83	1660.93	21.34	LP2
SO-C-17-027	408345.06	4225353.41	1663.22	27.43	LP2
SO-C-17-028	406300.48	4223684.56	1865.07	31.39	Dump
SO-C-17-029	406884.26	4223531.96	1869.80	96.62	Dump
SO-C-17-030	406071.07	4223409.66	1855.46	13.87	Stockpile E
SO-C-17-031	406129.73	4223469.03	1855.65	32.61	Stockpile E
SO-C-17-032	406126.50	4223410.34	1854.19	25.60	Stockpile E
SO-C-17-033	406203.03	4223409.74	1853.57	43.89	Stockpile E
SO-C-17-034	406126.29	4223329.71	1852.04	29.26	Stockpile E
SO-C-17-035	404808.74	4222472.28	1909.30	4.88	Stockpile W
SO-C-17-036	404781.71	4222422.98	1908.08	5.18	Stockpile W
SO-C-17-037	404399.16	4222905.00	1916.38	2.44	Stockpile W
SO-C-17-038	404562.29	4222823.78	1905.64	1.52	Stockpile W
SO-C-17-039	404715.77	4222670.27	1907.51	17.37	Stockpile W
SO-C-17-040	404754.51	4222519.91	1902.42	19.51	Stockpile W
SO-C-17-041	404809.73	4222570.11	1903.49	17.68	Stockpile W
SO-C-17-042	404759.95	4222618.00	1903.91	23.47	Stockpile W
SO-C-17-043	404761.02	4222719.52	1906.48	20.42	Stockpile W
SO-C-17-044	404711.61	4222750.31	1906.52	30.79	Stockpile W
SO-C-17-045	404806.76	4222667.49	1905.43	25.60	Stockpile W

Table 10.2: Sonic Drill Hole Results – 2017. Ag and Au results in g/t.									
HOLE-ID	FROM	то	INTERVAL	AG_T	AU_T	AG_SOL	AU_SOL	Area	
SO-C-17-001	0.00	33.83	33.83	44.5	0.098	25.3	0.025	LP1	
SO-C-17-002	0.00	32.61	32.61	35.3	0.048	17.3	0.030	LP1	
SO-C-17-003	0.00	32.00	32.00	48.8	0.088	27.0	0.027	LP1	
SO-C-17-004	0.00	24.08	24.08	47.8	0.061	24.4	0.038	LP1	
SO-C-17-005	0.00	29.57	29.57	39.7	0.199	22.8	0.033	LP1	
SO-C-17-006	0.00	20.12	20.12	28.8	0.039	15.0	0.029	LP1	
SO-C-17-007	0.00	18.59	18.59	57.6	0.114	37.7	0.055	LP1	
SO-C-17-008	0.00	22.25	22.25	39.3	0.078	19.2	0.038	LP1	
SO-C-17-009	0.00	21.95	21.95	31.3	0.038	17.2	0.015	LP1	
SO-C-17-010	0.00	21.95	21.95	29.3	0.092	15.4	0.029	LP1	
SO-C-17-011	0.00	20.42	20.42	25.7	0.053	13.8	0.020	LP1	
SO-C-17-012	0.00	22.25	22.25	49.7	0.102	29.9	0.044	LP1	
SO-C-17-013	0.00	22.25	22.25	54.5	0.089	30.3	0.047	LP1	
SO-C-17-014	0.00	21.95	21.95	35.3	0.087	17.0	0.043	LP1	
SO-C-17-015	0.00	19.51	19.51	28.7	0.045	17.3	0.029	LP1	
SO-C-17-016	0.00	20.73	20.73	30.5	0.083	18.1	0.028	LP1	
SO-C-17-017	0.00	13.11	13.11	36.6	0.061	21.4	0.026	LP1	
SO-C-17-018	0.00	28.35	28.35	38.9	0.082	22.7	0.035	LP2	
SO-C-17-019	0.00	28.04	28.04	57.3	0.180	30.5	0.046	LP2	
SO-C-17-020	0.00	28.04	28.04	45.0	0.104	24.9	0.032	LP2	
SO-C-17-021	0.00	27.13	27.13	30.1	0.056	18.0	0.016	LP2	
SO-C-17-022	0.00	29.26	29.26	43.4	0.076	25.4	0.036	LP2	
SO-C-17-023	0.00	27.74	27.74	55.9	0.114	29.9	0.032	LP2	
SO-C-17-024	0.00	27.13	27.13	33.8	0.102	17.8	0.046	LP2	
SO-C-17-025	0.00	28.35	28.35	39.0	0.083	24.5	0.038	LP2	
SO-C-17-026	0.00	21.34	21.34	50.5	0.124	29.1	0.035	LP2	
SO-C-17-027	0.00	27.43	27.43	42.8	0.076	23.4	0.019	LP2	
SO-C-17-028			No S	ignificant	Results		•	Dumps	
SO-C-17-029			No S	ignificant	Results			Dumps	
SO-C-17-030	0.00	11.73	11.73	26.7	0.115	16.3	0.104	Stockpile E	
SO-C-17-031	0.00	14.33	14.33	26.9	0.100	16.9	0.075	Stockpile E	
SO-C-17-031	18.59	27.74	9.15	14.6	0.069	10.0	0.066	Stockpile E	
SO-C-17-032	0.00	21.95	21.95	29.2	0.084	24.6	0.083	Stockpile E	
SO-C-17-033	0.00	27.74	27.74	20.7	0.079	13.3	0.080	Stockpile E	
SO-C-17-034	0.00	21.49	21.49	25.0	0.090	15.8	0.070	Stockpile E	
SO-C-17-035	0.00	2.13	2.13	10.0	0.055	4.9	0.070	Stockpile W	
SO-C-17-036	0.00	3.66	3.66	16.7	0.103	11.0	0.105	Stockpile W	
SO-C-17-037			No S	ignificant	Results			Stockpile W	
SO-C-17-038			No S	ignificant	Results			Stockpile W	
SO-C-17-039	0.00	16.46	16.46	31.9	0.110	18.0	0.097	Stockpile W	
SO-C-17-040	0.00	17.68	17.68	23.0	0.074	13.3	0.055	Stockpile W	
SO-C-17-041	0.00	16.76	16.76	38.3	0.175	25.2	0.159	Stockpile W	
SO-C-17-042	0.00	22.40	22.40	26.2	0.088	15.4	0.081	Stockpile W	
SO-C-17-043	0.00	19.81	19.81	26.3	0.086	16.5	0.086	Stockpile W	
SO-C-17-044	0.00	30.79	30.79	17.3	0.108	10.7	0.101	Stockpile W	
SO-C-17-045	0.00	24.54	24.54	22.9	0.131	13.5	0.108	Stockpile W	

. -11- 0047 A

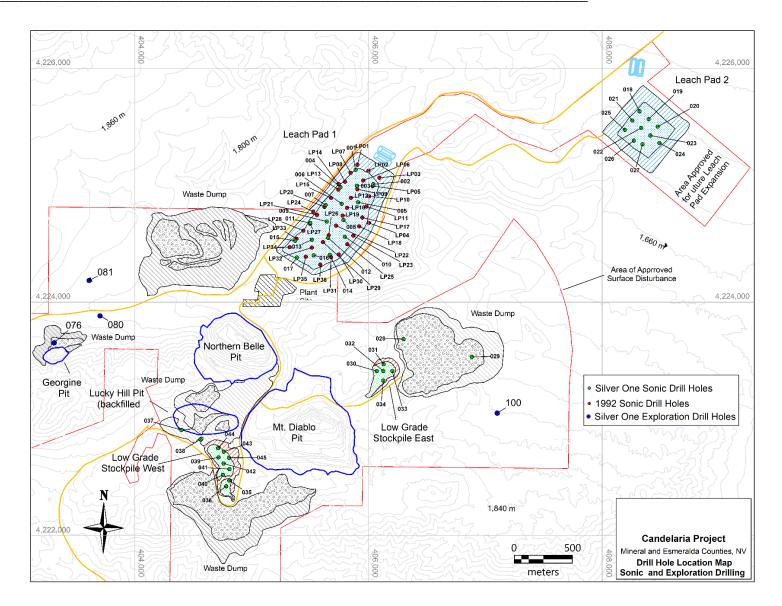


Figure 10.1: Candelaria Sonic Drill Hole Locations

SO-C-20-057

SO-C-20-058

SO-C-20-058A

SO-C-20-059

SO-C-20-060

405086.73

405214.59

405212.81

405481.95

405563.91

4223798.36

4223841.78

4223840.11

4223426.02

4223458.21

10.2 2019-2022 RC and Core Programs

Silver One completed three drill programs on the Candelaria property where the first was a diamond drill program commencing in December 2019 followed by two phases of RC drilling in 2021 and another RC drill program in January of 2022. The Silver One's drill programs involved drilling holes on Mount Diablo above and down dip from the open pit, down dip from the Northern Belle pit, as well as on the Georgine and Green Nick areas (Fig 10.2 to 10.4).

Nine HQ and PQ core holes (holes 46-54) were drilled in 2019 to 2020 for 2,860.57 meters of PQ and HQ core. The program in 2021 reported 14,494.95 m of RC drilling (holes 55-100) with 293.4 m of diamond drilling at the bottom of hole 81 and the 2022 program reported 7,632.26 m (holes 101-131). Between April and August 2022, a total of 1.010.74 meters of HQ and NQ diamond drill holes, distributed in six holes were completed for metallurgical testing (holes 132-137). In total 26,292 metres were drilled in 92 drill holes (R. Diaz, pers. comm.2025).

The 2019 – 2020 diamond drilling program was carried out using an Atlas Copco CS14 drill. The drill rig was track mounted and used 3 m PQ and HQ rods with a 3 m core tube. Core was placed in boxes at the rig prior to transporting to the secure sampling facility for logging and sampling. RC Samples were collected at the drill and logged at the sampling facility. 2019 to 2022 drill hole collars are listed in Table 10.3 and shown on Figures 10.2 to 10.4. A summary of significant analytical results is shown in Tables 10.4 and 10.5. Collar location coordinates are in UTM NAD83 zone 11N. Elevations are reported in metres. The drill holes are marked in the field with a cement plate and were surveyed by Desert Engineering.

accuracy and	Tenability of	results.				
Table 10.1 Ca	andelaria RO	C and Diamo	nd Drill Ho	ole Collars	(UTM	NAD83 11N) -
Hole ID	Location X	Location Y	Location Z	Length (m)	Туре	Zone
SO-C-19-046	405348.28	4223270.72	1856.83	183.80	Core	Mt Diablo
SO-C-19-047	405438.28	4223480.73	1866.47	299.62	Core	Mt Diablo
SO-C-19-048	405532.52	4223528.15	1866.59	377.68	Core	Mt Diablo
SO-C-19-049	405534.16	4223572.85	1862.01	373.32	Core	Mt Diablo
SO-C-20-050	405503.15	4223502.06	1865.42	363.20	Core	Mt Diablo
SO-C-20-051	405562.85	4223576.1	1863.72	395.48	Core	Mt Diablo
SO-C-20-052	405319.66	4223289.07	1856.9	302.64	Core	Mt Diablo
SO-C-20-053	404785.21	4223933.63	1733.07	243.84	Core	Northern Belle
SO-C-20-054	404906.83	4223936.26	1736.29	321.57	Core	Northern Belle
SO-C-20-055	404925.79	4223925.39	1735.96	111.25	RC	Northern Belle
SO-C-20-055A	404924.09	4223927.64	1735.91	298.71	RC	Northern Belle
SO-C-20-056	404962.07	4223898.72	1738.44	108.20	RC	Northern Belle
SO-C-20-056A	404965.11	4223898.89	1738.42	329.19	RC	Northern Belle

1756.49

1758.07

1758.14

1888.51

1888.86

318.52

51.82

349.00

390.15

397.77

RC

RC

RC

RC

RC

Northern Belle

Northern Belle

Northern Belle

Mt Diablo

Mt Diablo

There are no known drilling, sampling and recovery factors that could materially impact the accuracy and reliability of results.

Hole ID	Location X	Location Y	Location Z	Length (m)	Туре	Zone
SO-C-20-061	405624.3	4223481.8	1885.44	445.01	RC	Mt Diablo
SO-C-20-062	405619.27	4223389.31	1887.68	376.43	RC	Mt Diablo
SO-C-20-063	405534.88	4223570.78	1862.03	449.59	RC	Mt Diablo
SO-C-20-063	405516.41	4223516.7	1865.65	397.77	RC	Mt Diablo
SO-C-20-065	405132.94	4223749.36	1764.33	249.94	RC	Northern Belle
SO-C-20-065						
	405437.17	4223484.4	1866.26	349.00	RC	Mt Diablo
SO-C-20-067	405626.17	4223606.59	1863.05	464.83	RC	Mt Diablo
SO-C-20-068	405055.21	4223115.38	1821.56	152.40	RC	Mt Diablo
SO-C-20-069	405673.64	4223481.92	1883.64	487.69	RC	Mt Diablo
SO-C-20-070	405382.24	4223328.02	1857.22	300.23	RC	Mt Diablo
SO-C-20-071	405347.5	4223295.4	1856.909	184.41	RC	Mt Diablo
SO-C-21-071A	405345.04	4223297.71	1857.01	286.52	RC	Mt Diablo
SO-C-20-072	405688.2	4223629.1	1864.48	74.68	RC	Mt Diablo
SO-C-21-072A	405687.97	4223625.9	1864.61	560.84	RC	Mt Diablo
SO-C-21-073	405332.88	4223246.49	1856.91	234.70	RC	Mt Diablo
SO-C-21-074	405667.97	4223320.2	1869.89	312.42	RC	Mt Diablo
SO-C-21-075	405652.17	4223289.96	1868.33	265.18	RC	Mt Diablo
SO-C-21-076	403309.66	4223652.11	1835.33	480.07	RC	Mt Diablo
SO-C-21-077	405331.96	4223247.68	1856.91	295.66	RC	Mt Diablo
SO-C-21-078	405311.13	4223228.95	1857.07	233.17	RC	Mt Diablo
SO-C-21-079	405737.05	4223512.69	1882.71	426.73	RC	Mt Diablo
SO-C-21-080	403702.11	4223882.67	1779.86	487.69	RC	Mt Diablo
SO-C-21-081	403608.15	4224186.03	1792.29	989.88	RC	Mt Diablo
SO-C-21-082	405175.72	4223360.49	1804.13	172.21	RC	Mt Diablo
SO-C-21-083	404915.04	4222908.19	1851.61	121.92	RC	Mt Diablo
SO-C-21-084	405098.79	4223001.89	1837.18	97.54	RC	Mt Diablo
SO-C-21-084A	405098.61	4222999.22	1837.11	129.54	RC	Mt Diablo
SO-C-21-085	405021.83	4223001.93	1813.25	109.73	RC	Mt Diablo
SO-C-21-086	405004.73	4222928.78	1806.54	79.25	RC	Mt Diablo
SO-C-21-087	404940.28	4222982.43	1842.38	129.54	RC	Mt Diablo
SO-C-21-088	405501.36	4222605.09	1885.49	179.83	RC	Mt Diablo
SO-C-21-089	405349.85	4222568.09	1913.77	164.59	RC	Mt Diablo
SO-C-21-090	405212.7	4223587.87	1783.19	198.12	RC	Northern Belle
SO-C-21-091	405204.5	4223615.3	1782.25	196.60	RC	Northern Belle
SO-C-21-092	405228.04	4223552.67	1784.77	210.31	RC	Northern Belle
SO-C-21-093	405897.1	4222866.36	1846.72	240.79	RC	Mt Diablo
SO-C-21-094	404656.17	4223004.83	1900.88	123.45	RC	Mt Diablo
SO-C-21-095	404362.81	4223040.19	1870.23	643.14	RC	Northern Belle
SO-C-21-096	404696.11	4223028.09	1900.72	220.98	RC	Mt Diablo
SO-C-21-097	404751.77	4222917.42	1886.35	152.40	RC	Northern Belle
00 0 21-031	10 1101.11	1222011.72	1000.00	102.40		

Hole ID	Location X	Location Y	Location Z	Length (m)	Туре	Zone
SO-C-21-098	405028.54	4223045.59	1817.42	166.12	RC	Mt Diablo
SO-C-21-099	405403.54	4223521.89	1861.82	367.29	RC	Mt Diablo
SO-C-21-100	407101.31	4223049.53	1781.9	225.55	RC	Mt Diablo
SO-C-22-101	405912.5	4222839.05	1849.47	190.50	RC	Mt Diablo
SO-C-22-102	405903.23	4222805.44	1853.32	185.93	RC	Mt Diablo
SO-C-22-103	405906.52	4222807.16	1853.1	195.07	RC	Mt Diablo
SO-C-22-104	405906	4222805.27	1853.3	155.45	RC	Mt Diablo
SO-C-22-105	405914.1	4222898.37	1843.09	234.70	RC	Mt Diablo
SO-C-22-106	405839.03	4223049.79	1832.93	173.74	RC	Mt Diablo
SO-C-22-106A	405846.3	4223050.34	1833.08	275.85	RC	Mt Diablo
SO-C-22-107	405676.28	4223156.13	1833.46	284.99	RC	Mt Diablo
SO-C-22-108	405972.07	4222972.02	1834.82	225.55	RC	Mt Diablo
SO-C-22-109	405967.62	4222900.58	1840.8	195.07	RC	Mt Diablo
SO-C-22-110	405982.39	4222815.88	1848.95	100.59	RC	Mt Diablo
SO-C-22-110A	405982.27	4222812.16	1849.24	170.69	RC	Mt Diablo
SO-C-22-111	405969.6	4222749.11	1859.32	140.21	RC	Mt Diablo
SO-C-22-112	406107.3	4222814.67	1840.31	193.55	RC	Mt Diablo
SO-C-22-113	406119.44	4222883.33	1831.61	190.50	RC	Mt Diablo
SO-C-22-114	406136.81	4222965.92	1824.82	225.55	RC	Mt Diablo
SO-C-22-115	406283.08	4222829.16	1834.63	210.31	RC	Mt Diablo
SO-C-22-116	406283.53	4222793.61	1837.96	202.69	RC	Mt Diablo
SO-C-22-117	404775.84	4222970.97	1888.26	144.78	RC	Mt Diablo
SO-C-22-118	404776.76	4222970.96	1888.18	86.87	RC	Mt Diablo
SO-C-22-118A	404777.99	4222971.03	1888.26	132.59	RC	Mt Diablo
SO-C-22-119	404938.66	4222983.7	1842.84	42.67	RC	Mt Diablo
SO-C-22-119A	404940.13	4222982.17	1842.86	135.64	RC	Mt Diablo
SO-C-22-119B	404938.93	4222981.01	1843.01	135.64	RC	Mt Diablo
SO-C-22-120	404937.52	4222978.7	1843	80.77	RC	Mt Diablo
SO-C-22-120A	404940.11	4222976.18	1843.02	79.25	RC	Mt Diablo
SO-C-22-121	404972.06	4223043.24	1835.53	160.02	RC	Mt Diablo
SO-C-22-122	405723.24	4223379.13	1878.17	355.10	RC	Mt Diablo
SO-C-22-123	405494.52	4223510.07	1865.24	390.15	RC	Mt Diablo
SO-C-22-124	405578.78	4223401.79	1889.66	355.10	RC	Mt Diablo
SO-C-22-125	405579.31	4223397.54	1889.52	312.42	RC	Mt Diablo
SO-C-22-126	405607.26	4223392.34	1888.42	315.47	RC	Mt Diablo
SO-C-22-127	405607.2	4223391.24	1888.41	300.23	RC	Mt Diablo
SO-C-22-128	404895.09	4223969.32	1736.08	321.57	RC	Northern Belle
SO-C-22-129	404826.6	4223942.15	1729.36	260.61	RC	Northern Belle
SO-C-22-130	404735.55	4223924.5	1738.36	300.23	RC	Northern Belle
SO-C-22-131	404649.61	4223871.34	1757.12	172.21	RC	Northern Belle

Hole ID	Location X	Location Y	Location Z	Length (m)	Туре	Zone
SO-C-22-132	405462.892	4223229.401	1851.547	176.50	Core	Mt Diablo
SO-C-22-133	405493.274	4223234.474	1851.502	193.50	Core	Mt Diablo
SO-C-22-134	405551.062	4223219.065	1820.666	164.60	Core	Mt Diablo
SO-C-22-135	405311.544	4223091.628	1833.283	169.11	Core	Mt Diablo
SO-C-22-136	405314.097	4223231.761	1857.319	145.82	Core	Mt Diablo
SO-C-22-137	405382.667	4223246.781	1858.709	161.21	Core	Mt Diablo

Table 10.2 Diamond Drill Hole Results – 2019 to 2020

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Pb (%)	Zn (%)	Notes
SO-C-19-046	98.00	100.00	2.00	0.14	112.03	187.00	0.09	0.05	Oxides
and	141.66	163.76	22.10	0.32	158.54	222.12	0.26	0.33	Oxides
includes	141.66	152.00	10.34	0.16	81.63	167.02	0.17	0.28	Oxides
includes	152.00	160.00	8.00	0.63	313.67	233.75	0.45	0.45	Oxides
includes	160.00	163.76	3.76	0.11	39.99	348.91	0.10	0.22	Oxides
and	180.00	182.00	2.00	0.01	26.40	67.00	0.00	0.01	Ox. FW of LCS
SO-C-19-047	260.00	264.00	4.00	2.64	16.15	34.50	0.03	0.06	Pick Handle Thrust Mineralization
and	272.00	299.62	27.62	0.45	350.11	327.59	0.64	0.87	LCS
includes	272.00	278.00	6.00	0.10	43.47	95.00	0.06	0.13	Oxides
includes	278.00	286.00	8.00	1.33	1,129.34	968.25	2.08	1.87	Oxides
includes	286.00	299.62	13.62	0.08	27.45	53.75	0.05	0.6	Oxides
SO-C-19-048	325.73	342.29	16.56	0.58	318.27	332.73	0.93	1.66	Oxides
includes	325.73	334.00	8.27	0.95	501.88	465.71	1.60	2.92	Oxides
includes	334.00	340.20	6.20	0.10	47.20	105.37	0.11	0.36	Oxides
includes	340.20	342.29	2.09	0.58	395.90	481.00	0.67	0.52	Mixed
and	344.99	348.00	3.01	0.07	28.84	61.33	0.01	0.04	Sulphides
SO-C-19-049	330.00	349.98	19.98	0.29	96.47	144.54	0.30	0.34	Mixed
includes	330.00	334.00	4.00	0.34	25.60	84.00	0.03	0.06	Mixed
includes	334.00	345.06	11.06	0.37	137.08	176.97	0.51	0.56	Mixed
includes	345.06	349.98	4.92	0.08	62.80	120.87	0.05	0.08	Mixed
SO-C-20-050	306.04	331.63	25.59	0.31	172.16	392.33	0.38	1.07	Oxides
includes	306.04	322.00	15.96	0.41	231.50	510.90	0.50	1.34	Oxides
includes	322.00	331.63	9.63	0.14	73.82	195.84	0.18	0.62	Oxides
SO-C-20-051	186.00	194.00	8.00	0.13	33.68	68.25	0.11	0.09	Oxides
and	353.36	372.74	19.38	0.26	152.19	220.68	0.31	0.46	
includes	353.36	370.10	16.74	0.27	166.16	239.05	0.35	0.51	
includes	370.00	372.64	2.64	0.17	63.63	104.21	0.08	0.16	
SO-C-20-052	150.00	156.00	6.00	0.30	92.87	139.33	0.15	0.13	Oxides
includes	150.00	152.00	2.00	0.45	219.30	183.00	0.43	0.19	
includes	152.00	156.00	4.00	0.22	29.65	117.50	0.02	0.10	

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Cu (ppm)	Pb (%)	Zn (%)	Notes
and	178.00	182.00	4.00	0.10	28.40	86.00	0.15	0.02	
and	217.93	221.84	3.91	0.21	114.06	120.00	0.24	0.29	
and	244.00	248.11	4.11	0.06	17.67	73.02	0.02	0.02	
and	256.00	258.00	2.00	0.19	42.60	68.00	0.06	0.00	
SO-C-20-053	172.00	180.00	8.00	0.79	237.29	254.00	0.32	0.40	Oxides
includes	172.00	174.00	2.00	2.84	893.97	373.00	1.15	1.42	
includes	174.00	180.00	6.00	0.10	18.40	214.33	0.05	0.06	
SO-C-20-054	236.00	242.00	6.00	0.44	45.73	102.00	0.18	0.44	Oxides
and	248.00	254.00	6.00	0.07	51.13	210.33	0.04	0.06	

Table 10.3 RC Drill Hole Results – 2020 to 2022

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
SO-C-20-055	242.32	249.94	7.62	0.20	26.1	Northern Belle
and	266.7	271.27	4.57	0.20	52.3	Northern Belle
and	274.32	275.84	1.52	0.14	34.0	Northern Belle
SO-C-20-056	216.41	234.70	18.29	0.20	100.0	Northern Belle
Includes	217.9	219.46	1.52	0.71	382.0	Northern Belle
and	257.56	260.60	3.05	0.03	29.5	Northern Belle
and	274.32	277.37	3.05	0.20	24.9	Northern Belle
and	315.47	316.99	1.52	0.06	49.4	Northern Belle
SO-C-20-057	210.31	213.36	3.05	0.70	61.0	Northern Belle
and	234.70	245.36	10.67	0.27	115.3	Northern Belle
and	309.37	310.90	1.52	0.20	106.0	Northern Belle
SO-C-20-058	-	-		No signif	icant assays	Northern Belle
SO-C-20-059	294.13	295.66	1.52	0.17	25.3	North Diablo pit
and	336.81	349.00	12.18	0.55	407.3	North Diablo pit
Includes	338.33	341.38	3.05	1.51	1,032.0	North Diablo pit
and	349.00	355.09	6.10	0.09	20.4	North Diablo pit
SO-C-20-060	358.14	367.28	9.14	0.40	294.8	North Diablo pit
Includes	359.66	365.76	6.10	0.50	406.8	North Diablo pit
SO-C-20-061	388.62	390.14	1.52	0.11	62.7	North Diablo pit
SO-C-20-062	324.61	339.85	15.24	0.27	169.1	North Diablo pit
Includes	335.28	339.85	4.57	0.41	246.0	North Diablo pit
and	339.85	342.90	3.05	0.12	53.7	North Diablo pit
SO-C-20-063				No significant assays		North Diablo pit
SO-C-20-064	347.47	352.04	4.57	0.14	58.6	North Diablo pit
Includes	347.47	349.00	1.52	0.22	99.3	North Diablo pit
SO-C-20-065	213.36	233.17	19.81	0.20	84.4	Northern Belle
Includes	220.98	224.03	3.05	0.30	205.5	Northern Belle

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
SO-C-20-066	289.56	291.08	1.52	0.33	70.0	North Diablo pit
SO-C-20-067	349.00	352.05	3.05	0.21	146.3	North Diablo pit
Includes	349.00	350.52	1.52	0.34	244.0	North Diablo pit
SO-C-20-068	111.25	141.73	30.48	0.06	40.0	West Diablo pit
Includes	118.87	131.06	12.19	0.06	70.0	West Diablo pit
SO-C-20-069	484.63	487.68	3.05	0.20	86.0	North Diablo pit
SO-C-20-070	245.36	263.65	18.29	0.09	48.0	North Diablo pit
Includes	245.36	248.41	3.05	0.09	99.4	North Diablo pit
SO-C-21-071A	222.50	228.60	6.10	0.11	96.0	North Diablo pit
Includes	222.50	225.55	3.05	0.19	154.0	North Diablo pit
SO-C-21-072A	432.82	446.53	13.72	0.28	198.0	North Diablo pit
Includes	435.86	440.44	4.57	0.44	330.0	North Diablo pit
Includes	443.48	446.53	3.05	0.44	329.0	North Diablo pit
SO-C-21-073	108.20	111.25	3.05	0.52	70.0	North Diablo pit
and	149.35	155.45	6.10	0.12	99.4	North Diablo pit
and	156.97	164.59	7.62	0.73	563.0	North Diablo pit
Includes	163.07	164.59	1.52	2.55	1,776.0	North Diablo pit
and	164.59	170.69	6.10	0.16	31.5	North Diablo pit
and	220.98	224.03	3.05	0.09	55.1	North Diablo pit
SO-C-21-074	263.65	277.37	13.72	0.47	233.0	North Diablo pit
Includes	274.32	277.37	3.05	1.16	546.0	North Diablo pit
and	277.37	288.04	10.67	0.18	50.5	North Diablo pit
SO-C-21-075	234.70	239.27	4.57	0.09	24.0	North Diablo pit
and	251.46	252.98	1.52	0.18	90.9	North Diablo pit
SO-C-21-076	370.33	374.90	4.57	0.11	33.7	Georgine
Includes	370.33	371.86	1.52	0.06	50.0	Georgine
SO-C-21-077	199.65	213.36	13.71	0.19	106.4	North Diablo pit
SO-C-21-078	184.40	198.12	13.72	0.17	97.9	North Diablo pit
Includes	184.40	187.45	3.05	0.37	218.5	North Diablo pit
Includes	187.45	190.50	3.05	0.14	74.1	North Diablo pit
Includes	190.50	193.55	3.05	0.18	125.0	North Diablo pit
SO-C-21-079	312.42	320.04	7.62	0.74	273.0	North Diablo pit
Includes	315.47	318.52	3.05	1.47	476.5	North Diablo pit
and	416.05	420.62	4.57	0.62	266.3	North Diablo pit
Includes	417.58	419.10	1.52	1.22	474.0	North Diablo pit
SO-C-21-080	173.74	175.26	1.52	0.08	78.2	West Ext N.Belle
and	187.45	188.98	1.52	0.19	58.7	West Ext N.Belle
SO-C-21-081	927.97	928.64	0.67	5.99	14.6	IP/Mag anomaly
SO-C-21-082	-	-	-	No signif	icant assays	Southeast rim N. Belle
SO-C-20-083	0.00	9.14	9.14	0.05	17.4	West rim Diablo

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
and	38.10	39.62	1.52	0.10	52.9	West rim Diablo
and	120.40	121.92	1.52	0.20	16.9	West rim Diablo
SO-C-21-084A	15.24	16.76	1.52	0.10	12.9	Diablo West wall bench
and	99.06	105.16	6.10	0.19	91.7	Diablo West wall bench
Includes	103.63	105.16	1.52	0.25	206.0	Diablo West wall bench
and	105.16	129.54	24.38	0.08	35.0	Diablo West wall bench
SO-C-21-085	70.10	79.25	9.14	0.19	45.0	West rim Diablo pit
and	79.25	92.96	13.72	0.53	205.6	West rim Diablo pit
and	92.96	97.54	4.57	0.20	45.2	West rim Diablo pit
SO-C-21-086	-	-		No signif	icant assays	Southwest rim Diablo
SO-C-21-087	16.76	39.62	22.86	0.06	28.7	West rim Diablo pit
Includes	27.43	32.00	4.57	0.10	63.0	West rim Diablo pit
Includes	30.48	32.00	1.52	0.11	90.0	West rim Diablo pit
and	74.68	83.82	9.14	0.74	300.0	West rim Diablo pit
and	83.82	96.01	12.19	0.07	30.5	West rim Diablo pit
and	96.01	99.06	3.05	0.22	157.0	West rim Diablo pit
and	99.06	103.63	4.57	0.16	46.4	West rim Diablo pit
SO-C-21-088	-	-	-	No signif	icant assays	Southern rim Diablo
SO-C-21-089	-	-	-	No signif	icant assays	Southern rim Diablo
SO-C-21-090	92.96	99.06	6.10	0.35	9.0	East Northern Belle
and	103.63	117.35	13.72	0.28	123.0	East Northern Belle
Includes	103.63	106.68	3.05	0.73	326.5	East Northern Belle
Includes	106.68	109.73	3.05	0.17	39.6	East Northern Belle
Includes	109.73	112.78	3.05	0.27	145.5	East Northern Belle
Includes	112.78	117.35	4.57	0.07	28.0	East Northern Belle
and	137.16	138.68	1.52	0.07	51.7	East Northern Belle
SO-C-21-091	147.83	155.45	7.62	0.20	99.1	East Northern Belle
Includes	150.88	153.92	3.05	0.28	160.0	East Northern Belle
SO-C-21-092	134.11	160.02	25.91	0.40	248.5	East Northern Belle
Includes	134.11	137.16	3.05	0.13	55.7	East Northern Belle
Includes	137.16	141.73	4.57	1.48	1,070.0	East Northern Belle
Includes	141.73	144.78	3.05	0.65	298.5	East Northern Belle
SO-C-21-093	172.21	179.83	7.62	0.20	132.9	East Diablo pit
Includes	172.21	176.78	4.57	0.13	77.8	East Diablo pit
Includes	176.78	179.83	3.05	0.31	215.5	East Diablo pit
and	179.83	198.12	18.29	0.06	55.0	East Diablo pit
SO-C-21-094	86.87	88.39	1.52	0.12	30.4	East Diablo pit
and	88.39	89.92	1.52	0.08	26.2	West Diablo pit
SO-C-21-095	100.58	105.16	4.57	0.03	18.0	West Ext Diablo (Lucky Hill)
	515.11	516.64	1.52	0.39	21.7	West Ext Diablo (Lucky Hill)

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
SO-C-21-096	16.76	18.29	1.52	0.12	13.8	West Ext Diablo pit
and	33.53	35.05	1.52	0.09	32.0	West Ext Diablo pit
and	109.73	118.87	9.14	0.07	18.0	West Ext Diablo pit
and	135.64	158.50	22.86	0.05	20.9	West Ext Diablo pit
and	158.50	166.12	7.62	0.20	197.0	West Ext Diablo pit
Includes	158.50	163.07	4.57	0.31	264.0	West Ext Diablo pit
SO-C-21-097	36.58	39.62	3.05	0.11	11.5	West Ext Diablo pit
and	57.91	62.48	4.57	0.14	76.0	West Ext Diablo pit
SO-C-21-098	117.35	140.21	22.86	0.23	116.8	West rim Diablo pit
and	131.06	132.59	1.52	0.53	463.0	West rim Diablo pit
SO-C-21-099	251.46	254.51	3.05	0.07	65.7	North Diablo pit
and	341.38	342.90	1.52	0.11	22.3	North Diablo pit
SO-C-21-100	-	0.00	-	No signif	icant assays	Green Nick
SO-C-22-101	112.78	114.30	1.52	2.99	0.8	East Mt. Diablo pit
and	153.92	172.21	18.29	0.12	29.5	East Mt. Diablo pit
Includes	158.50	160.02	1.52	0.22	89.1	East Mt. Diablo pit
and	172.21	185.93	13.72	0.33	2.4	East Mt. Diablo pit
SO-C-22-102	147.83	166.12	18.29	0.14	62.6	East Mt. Diablo pit
Includes	147.83	155.45	7.62	0.12	72.6	East Mt. Diablo pit
Includes	158.50	160.02	1.52	0.30	109.0	East Mt. Diablo pit
Includes	164.59	166.12	1.52	0.20	146.0	East Mt. Diablo pit
SO-C-22-103	137.16	160.02	22.86	0.19	45.7	East Mt. Diablo pit
Includes	140.21	143.26	3.05	0.69	143.0	East Mt. Diablo pit
SO-C-22-104	97.54	120.40	22.86	0.16	85.0	East Mt. Diablo pit
Includes	97.54	106.68	9.14	0.22	165.8	East Mt. Diablo pit
and	123.44	137.16	13.72	0.23	10.4	East Mt. Diablo pit
SO-C-22-105	176.78	178.31	1.52	0.17	58.0	East Mt. Diablo pit
SO-C-22-106	150.88	173.74	22.86	0.03	28.2	East Mt. Diablo pit
Includes	161.54	163.07	1.52	0.05	119.0	East Mt. Diablo pit
SO-C-22-106A	160.02	163.07	3.05	0.05	127.0	East Mt. Diablo pit
and	252.98	275.84	22.86	0.29	142.3	East Mt. Diablo pit
Includes	263.65	266.70	3.05	0.76	501.5	East Mt. Diablo pit
SO-C-22-107	0	6.10	6.10	0.29	41.3	Northeast Mt. Diablo pit
and	9.14	12.19	3.05	0.13	30.9	Northeast Mt. Diablo pit
and	16.76	25.91	9.14	0.42	7.8	Northeast Mt. Diablo pit
and	228.60	246.89	18.29	0.14	44.7	Northeast Mt. Diablo pit
Includes	230.12	233.17	3.05	0.24	84.2	Northeast Mt. Diablo pit
SO-C-22-108	196.60	205.74	9.14	0.06	29.8	East Mt. Diablo pit
SO-C-22-109	155.45	176.78	21.34	0.11	42.6	East Mt. Diablo pit
SO-C-22-110A	118.87	144.78	25.91	0.12	43.9	East Mt. Diablo pit

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
Includes	132.59	134.11	1.52	0.28	87.9	East Mt. Diablo pit
SO-C-22-111	89.92	118.87	28.96	0.13	56.5	East Mt. Diablo pit
Includes	92.96	97.54	4.57	0.18	82.7	East Mt. Diablo pit
Includes	111.25	112.78	1.52	0.21	112.0	East Mt. Diablo pit
SO-C-22-112	41.15	48.77	7.62	0.31	16.6	East Mt. Diablo pit
and	85.34	86.87	1.52	0.56	19.6	East Mt. Diablo pit
and	120.40	121.92	1.52	0.37	11.2	East Mt. Diablo pit
and	128.02	132.59	4.57	0.12	34.9	East Mt. Diablo pit
SO-C-22-113	71.63	91.44	19.81	1.31	11.8	East Mt. Diablo pit
Includes	71.63	76.20	4.57	2.29	27.0	East Mt. Diablo pit
Includes	80.77	83.82	3.05	2.48	7.8	East Mt. Diablo pit
and	147.83	179.83	32.00	0.16	20.6	East Mt. Diablo pit
SO-C-22-114	102.11	108.20	6.10	0.57	124.3	East Mt. Diablo pit
Includes	102.11	103.63	1.52	0.90	409.0	East Mt. Diablo pit
and	175.26	199.64	24.38	0.09	27.1	East Mt. Diablo pit
Includes	192.02	195.07	3.05	0.18	75.2	East Mt. Diablo pit
SO-C-22-115	115.82	123.44	7.62	0.33	24.1	East Mt. Diablo pit
and	170.69	176.78	6.10	0.35	17.6	East Mt. Diablo pit
SO-C-22-116	135.64	156.97	21.34	0.14	15.6	East Mt. Diablo pit
SO-C-22-117	96.01	103.63	7.62	0.19	15.7	West Mt. Diablo pit
and	108.20	115.82	7.62	0.15	83.9	West Mt. Diablo pit
Includes	109.73	114.30	4.57	0.19	110.8	West Mt. Diablo pit
SO-C-22-118A	89.92	91.44	1.52	2.78	33.2	West Mt. Diablo pit
and	108.20	109.73	1.52	0.15	54.2	West Mt. Diablo pit
SO-C-22-119A	56.39	82.30	25.91	0.34	223.1	West Mt. Diablo pit
Includes	68.58	71.63	3.05	0.87	1,087.0	West Mt. Diablo pit
and	100.58	118.87	18.29	0.11	56.1	West Mt. Diablo pit
Includes	106.68	111.25	4.57	0.16	135.2	West Mt. Diablo pit
SO-C-22-119B	60.96	109.73	48.77	0.39	332.5	West Mt. Diablo pit
Includes	67.06	83.82	16.76	0.84	888.4	West Mt. Diablo pit
Includes	68.58	79.25	10.67	1.22	1,339.4	West Mt. Diablo pit
SO-C-22-120A	-	-	-	NSV		West Mt. Diablo pit
SO-C-22-121	100.58	118.87	18.29	0.17	63.0	West Mt. Diablo pit
Includes	108.20	111.25	3.05	0.23	108.0	West Mt. Diablo pit
SO-C-22-122	307.85	324.61	16.76	0.27	175.3	North Mt. Diablo pit
Includes	307.85	315.47	7.62	0.51	354.8	North Mt. Diablo pit
SO-C-22-123	310.90	312.42	1.52	0.36	131.0	North Mt. Diablo pit
and	335.28	336.80	1.52	0.24	74.7	North Mt. Diablo pit
and	349.00	350.52	1.52	0.25	41.1	North Mt. Diablo pit
SO-C-22-124	153.92	170.69	16.76	0.23	48.4	North Mt. Diablo pit

Drill Hole	From (m)	To (m)	Width (m)	Au (g/t)	Ag (g/t)	Notes
Includes	156.97	160.02	3.05	0.53	110.4	North Mt. Diablo pit
and	307.85	327.66	19.81	0.28	127.4	North Mt. Diablo pit
Includes	307.85	310.90	3.05	0.35	214.5	North Mt. Diablo pit
Includes	324.61	327.66	3.05	0.53	268.0	North Mt. Diablo pit
SO-C-22-125	109.73	137.16	27.43	0.13	22.1	North Mt. Diablo pit
Includes	132.59	135.64	3.05	0.32	57.4	North Mt. Diablo pit
and	281.94	298.70	16.76	0.48	252.4	North Mt. Diablo pit
Includes	284.99	288.04	3.05	0.85	518.5	North Mt. Diablo pit
Includes	294.13	297.18	3.05	0.90	420.0	North Mt. Diablo pit
SO-C-22-126	118.87	120.40	1.52	0.18	23.1	North Mt. Diablo pit
and	294.13	310.90	16.76	0.44	169.9	North Mt. Diablo pit
Includes	306.32	310.90	4.57	0.83	272.2	North Mt. Diablo pit
SO-C-22-127	77.72	79.25	1.52	0.27	99.0	North Mt. Diablo pit
and	275.84	284.99	9.14	0.38	143.0	North Mt. Diablo pit
SO-C-22-128	233.17	234.70	1.52	0.67	38.1	North Northern Belle pit
and	271.27	274.32	3.05	0.39	36.6	North Northern Belle pit
and	303.28	321.56	18.29	0.11	24.5	North Northern Belle pit
SO-C-22-129	176.78	181.36	4.57	1.04	31.5	North Northern Belle pit
and	187.45	199.64	12.19	0.72	128.2	North Northern Belle pit
Includes	187.45	193.55	6.10	0.82	228.4	North Northern Belle pit
and	220.98	224.03	3.05	0.42	199.0	North Northern Belle pit
SO-C-22-130	158.50	166.12	7.62	0.77	53.5	North Northern Belle pit
Includes	160.02	161.54	1.52	0.82	162.0	North Northern Belle pit
and	170.69	172.21	1.52	0.52	18.9	North Northern Belle pit
and	184.40	188.98	4.57	0.58	59.2	North Northern Belle pit
Includes	187.45	188.98	1.52	0.94	82.2	North Northern Belle pit
and	202.69	205.74	3.05	0.40	18.2	North Northern Belle pit
and	211.84	217.93	6.10	0.25	180.2	North Northern Belle pit
Includes	214.88	217.93	3.05	0.34	322.5	North Northern Belle pit
and	281.94	297.18	15.24	0.33	181.9	North Northern Belle pit
Includes	289.56	292.61	3.05	1.38	777.0	North Northern Belle pit
SO-C-22-131	140.21	150.88	10.67	0.49	178.4	North Northern Belle pit
Includes	147.83	150.88	3.05	0.50	491.5	North Northern Belle pit
and	155.45	156.97	1.52	0.16	50.5	North Northern Belle pit

RC and diamond exploration drill holes at Northern Belle and Mount Diablo are located in Figure 10.2. Two example drill sections through Northern Belle and Mount Diablo are shown in Figure 10.3 and Figure 10.4.

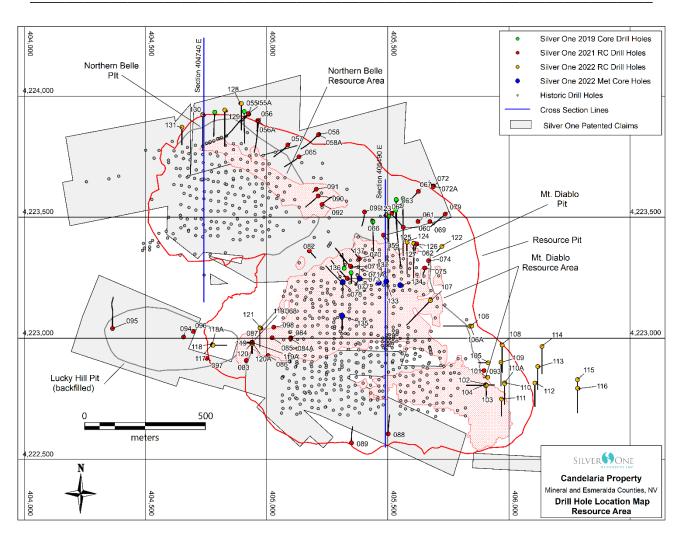


Figure 10.2: Candelaria 2019 - 2022 RC and Core Holes Location Detail

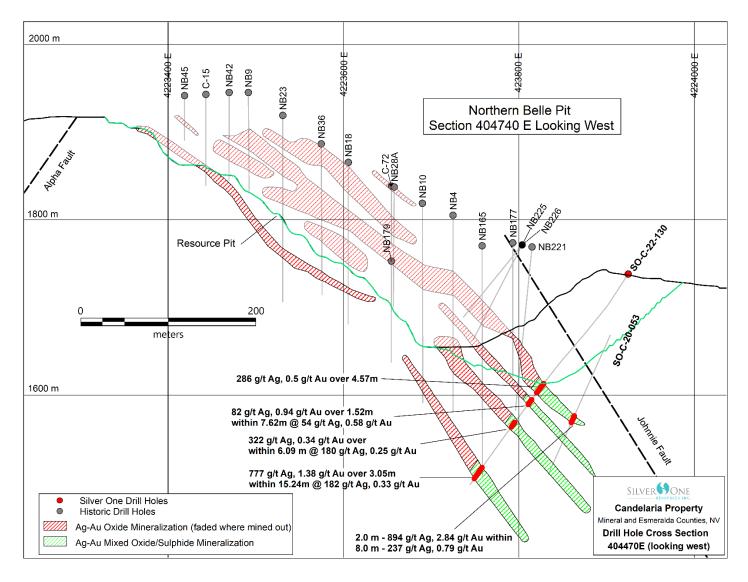


Figure 10.3: Candelaria Drill Section 404470E – Northern Belle

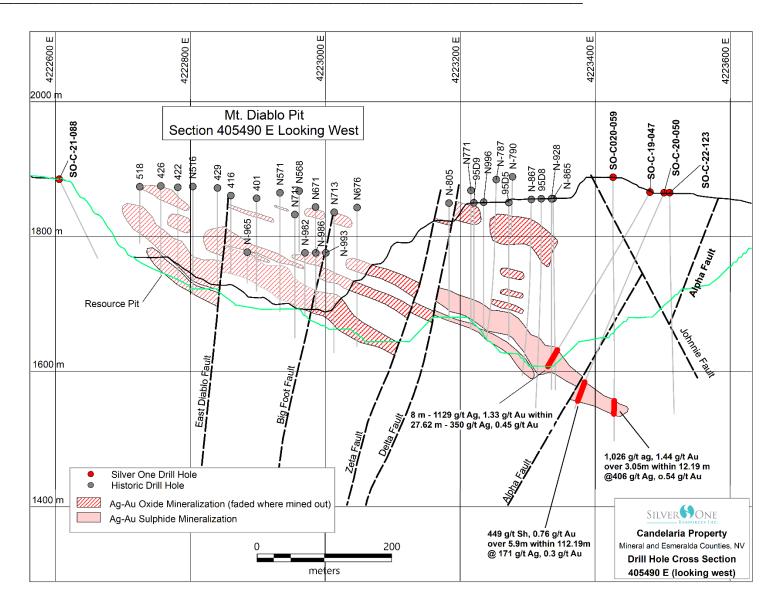


Figure 10.4: Candelaria Drill Section 405490E – Mount Diablo

11.0 SAMPLE PREPARATION, ANALYSES AND SECURITY

Historically, silver grades used in the resource and reserve estimates and production records at Candelaria have been based on soluble (leachable) silver grades (AgCN) and gold grades (AuCN) obtained from hot cyanide leach methods, since the previous open-pit operation's focus for processing was on heap leaching the silver and gold (Stevens, 2001). SSR and Silver One assayed all samples for both cyanide soluble and total gold and silver.

11.1 Sample Preparation and Analyses - Historical

11.1.1 Superior/Callahan/Congdon & Carey (1968 – 1975)

Sample and analytical procedures prior to 1976 are not documented. Fire assay (FA) results for Ag and selected samples for FA Au exist, however, the detailed methodology and laboratory are not known. Histogram and probability plots of AgCN results suggest the cyanide soluble ('CNsol') methodology was different than that used by the mine.

11.1.2 OxyMin - Nerco – Kinross (1976 - 1999)

RC and rotary drilling, sampling and analytical procedures used by Nerco and Kinross have been summarized by Nerco (1991) and Stevens (2001).

Sampling procedures at the mine were:

- Rotary and RC holes were sampled on 5-foot intervals
- Cuttings split at site with an approximately 9 kg sample collected in cloth sacks for analysis
- Cuttings air dried at the mine laboratory
- A 1 kg split was oven dried at 150° C and then crushed to -¼ inch
- A 300 g split was pulverized to -80 mesh and this pulp stored in a wire-closure kraft envelope

The cyanide soluble Ag-Au procedure used at the mine is summarized in Table 11.1.

The OxyMin partnership (Congdon & Carey and Occidental) was established in 1976 during mine development. The partnership established a temporary laboratory in Hawthorne during development and it seems likely that during this period (1977 to 1980) methodologies were similar to those used later at the mine.

	Superior/Callahan/Congdon- Carey Unknown		SSR Chemex	SVE AAL
	1968 - 1975	1976 - 1998	1999 - 2000	2019 - Present
Grind	Unkown	-80**	-150/-80	-150
Sample size	Unkown	20 g	20 g	50 g
CN conc.	Unkown	1%	1%	0.30%
CN vol.	Unkown	20 ml	20 ml	100 ml
Temp	Unkown	70 deg. C	70 deg. C	Room - 20 deg. C
Agit. Time	Unkown	30 min.	30 min.	120 min.
Centrifuge	Unkown	15 min.	15 min.	2 min.

Table 11.1: Summar	y of Candelaria historic and current CN soluble methods.
	y of banaciana mistorie and current of soluble methods.

11.1.3 Silver Standard (1999 – 2000)

Silver Standard's drill hole samples were shipped to Chemex Labs (now ALS) in Reno NV. for drying and sample prep. Pulp samples from Reno were shipped to Chemex Labs in North Vancouver B.C. for tri-acid digestion, 22 element ICP-AES analysis. Gold analyses were completed by Fire Assay Fusion / Atomic Absorption with silver overlimits by Fire Assay Fusion / Gravimetric analysis. Cyanide leachable silver was analyzed following the mine methodology (Table 11.1) but with -150 mesh pulp (instead of -80 mesh mine standard).

11.2 Sample Preparation and Analyses – Silver One

11.2.1 Sonic Drilling Sampling (2017)

Sample procedures for the sonic drilling campaign on the leach pads and low-grade stockpiles have been reported in McCrea (2020) and are summarized below from this report.

- The bags arriving from the drill were first individually weighed and organized by depth.
- Bags were measured to estimate recovery; any discrepancies between the marker ties and measured core length were recorded at this stage. Bags were then cut open and photographed prior to logging or sampling.
- The bags were marked up for sampling and then closed and laid in a separate room for partial drying prior to sampling.
- Holes were sampled in their entirety with individual samples range from 0.67 metres to 3.05 metres, all being true widths. Samples were spit in a Jones splitter at typically 1/8 of the sample interval resulting sample weight between 1 and 8.5 kg per sample (5 kg average).
- Split samples were transferred into transparent vinyl sample bags that were sequentially numbered to match the sample number sequences in the sample tag booklets used by the core-logging geologist. The remainder of the sample was properly bagged, labeled and stored in the storage facility, on site.
- the sealed samples were packed in properly labeled rice bags, which were placed on pallets, before being hand-delivered by Silver One personnel to the Fedex representative in charge of Skyline's account in Reno Nevada who shipped the samples to Skyline Labs in Tucson, Arizona.

All sonic drill samples collected were dried, split and assayed by Skyline Labs (Skyline) in Tucson, Arizona, USA (ISO 17025 Laboratory Competence Certification: 2005) for cyanide soluble silver, total silver, multi-element assay and fire assay gold as follows:

- FA-08-50 Silver by atomic absorption "AA" with aqua regia digestion, 50 gram sample.
- CN-2H-60 Gold-silver cyanide soluble with 2-hour cyanide shake and AA assay, 60 gram sample.
- FA-1-50 Gold fire assay with AA finish, 50-gram sample.
- TE-5 Multi-element assay, 4-acid digestion.
- Over limits of silver and gold were further analyzed by fire assay gravimetric, 50 gram sample.

As part of its standard operating procedures, the laboratory also inserts blanks, standards and includes duplicate analyses.

There is no relationship between Silver One and Skyline Labs other then the procurement of analytical services.

11.2.2 Diamond Drill Core Sampling (2019 – 2020)

Candelaria core handling was as follows:

- Core boxes are delivered to the logging area by drill crews at the end of each shift.
- Drill depths on box tops, box ends and core blocks are converted from feet to metres.
- Box tops and Box ends are labeled with Drill Hole Number, From To, Depth and Box Number
- Core is washed, rotated in the box to match up adjacent pieces of core where possible and marked at 2 m intervals.
- Core is photographed.
- Core is logged for RQD by geologist or core tech.
- Mag susceptibility measurements recorded by geologist or core tech on 2 m intervals by averaging 4 – 6 individual measurements per 2 m.
- Core is logged for lithology, mineralization, veining, alteration and structure. All logging and core measurements are recorded on paper logs and later entered directly into Datamine dhlogger or in Excel spreadsheets for importing into dhlogger.
- Assay sample intervals are marked on core, generally at 2 m intervals with breaks at lithologic contacts at the discretion of the geologist.
- Intervals selected for assay are sawed with half core sent for assay and half core saved in box.
- Boxes of sampled core are stored on racks in locked, shipping containers located on the property.

Core samples were assayed by American Assay Laboratories ("AAL" in Sparks, NV, USA. (IAS accredited Laboratory, ISO/IEC 17025:2017. Samples were analysed by 25 element ICP-OES with silver over limits by Fire Assay Fusion / Gravimetric and for gold by Fire Assay Fusion / ICP finish analysis. AAL also inserts blanks, standards and includes duplicate analyses to ensure proper sample preparation and equipment calibration.

There is no relationship between Silver One and American Assay Laboratories other then the procurement of analytical services.

11.2.3 Diamond Drill Core Met Sampling (2022)

In 2022, SVE completed six core holes totalling 1,010.74 m for the purposes of obtaining representative mineralized samples for metallurgical testing. All holes were located within the Mount Diablo pit.

Candelaria met core handling was as follows:

- Core boxes are delivered to the logging area by drill crews at the end of each shift.
- Drill depths on box tops, box ends and core blocks are converted from feet to metres.
- Box tops and Box ends are labeled with Drill Hole Number, From To, Depth and Box Number
- Core is washed, rotated in the box to match up adjacent pieces of core where possible and marked at 2 m intervals.
- Core is photographed.
- Core is logged for RQD by geologist or core tech.
- Mag susceptibility measurements recorded by geologist or core tech on 2 m intervals by averaging 4 – 6 individual measurements per 2 m.
- Core is logged for lithology, mineralization, veining, alteration and structure. All logging and core measurements are recorded on paper logs and later entered directly into Datamine dhlogger or in Excel spreadsheets for importing into dhlogger.
- 100% of mineralized zones in the six metallurgical core holes were composited to create a single sample for each drill hole and submitted for metallurgical testing.
- Boxes of sampled core are stored on racks in locked, shipping containers located on the property.

11.2.4 RC Cuttings Sampling (2019 – 2022)

RC rig sampling was conducted at the drill rig by an SVE geologist and followed the procedures detailed below.

- RC samples are collected at the drill; all RC drilling is conducted with air and/or water as the drilling medium.
- Assay samples consist of an approximate quarter-split of all cuttings and water returned from each 5 ft interval and are collected in an 18" x 24" MicroPor cloth sample bag, resulting in 6 kg to 10 kg samples when dry.
- Samples for logging of each 5-ft interval are washed at the drill site and saved in chip trays holding 100 ft (20 compartments) of chips; larger logging samples for each 5-ft interval are saved in 4x6 in kraft bags.
- The remaining 3/4 split of all cuttings are saved in 24x36 in woven, polypropylene bags and stored on the property for possible future use.
- Assay duplicates are collected at the drill by using approximate 1/8 splits for both the assay sample and duplicate.
- Samples are allowed to drain at the drill site and are transported to the secure core and sample facility by Company employees each day. Samples are then allowed to air dry in a fenced and locked facility prior to being submitted to the laboratory for analysis

All RC samples were assayed by American Assay Laboratories ("AAL") in Sparks, NV, USA (ISO accredited Laboratory, ISO/IEC 17025:2017). Samples were analyzed for thirty-five elements by ICP-MS. Gold and silver were analyzed by cyanide extraction, FA with ICP finish, samples over 100 g/t Ag were analyzed by gravimetric methods. Over limit Cu, Pb and Zn were analyzed by ore-grade volumetric analysis.

11.2.5 Surface Rock Sampling

Grab and chip samples collected by Silver One varied from 1 kg to 5 kg and were assayed by American Assay Laboratories ("AAL") in Sparks, NV, USA (ISO accredited Laboratory, ISO/IEC 17025:2017). Samples were analyzed for thirty-seven elements by ICP-MS. Over limit copper, lead and zinc were analyzed by ore-grade volumetric analysis. Silver One inserted commercial standard and blanks in the sample batches. AAL inserts blanks, standards and includes duplicate analyses to ensure proper sample preparation and equipment calibration.

11.3 Assay Quality Control ("QA/QC")

The current quality control program used at Candelaria follows industry standard best practices. SVE QA/QC results for RC drilling have been reported in several SVE internal reports, including for 2019 to 2021 drilling: Shenk, 2022; and for 2022 drilling: Cann, 2022 and are summarized below. QA/QC data for diamond drilling has not been reviewed because of the limited core drilling and sampling. The emphasis below is on RC results which comprise the majority of recent resource drilling.

Limited information is available for QA/QC practices used by Nerco (and likely Kinross) and these are summarized below. Little to no information is available for practices – if any- prior to 1976. An OxyMin report by Haxby and Coster (1978) reports a statistical study on the C and X series holes. The 1999-2000 RC drilling program by SSR does not report QC protocols (Kemp, 2000), however, the work likely met or exceeded industry best practices at the time.

11.3.1 QA/QC – Historical 1990 Nerco Drilling

Limited QA/QC data presented in (Nerco (1991) were reviewed and summarized in an internal SVE report by Cann (2024). The results are summarized in Table 11.2 below taken from that report. Historic QA/QC protocols were conducted according to accepted industry standards. Silver One geologists' analysis found that the $CV%_{AVE}$ for both Ag and Au is generally near or above acceptable or recommended values especially given the coarse pulps used by the mine.

	Range	ĩ	S	Slope Regr.	Correl.	CV%ave ⁱ				
NERCO FIELD (MET) DUPLICATES Silver (CNsol - ppm): n=143 ⁱⁱ										
Field_Orig	0.17 – 428.6	26.1	53.7	1.17	0.98	35.3				
Field_Dup	0.17 – 480.0	29.3	62.7							
	NERCO PULP I	RERUNS	Silver ((CNsol - ppm):	n=55					
Pulp_Orig	0.17 – 2005.7	165.7	363.7	0.96	1.00	20.1				
Pulp_Rerun	0.17 – 1913.1	160.2	349.9							
NE	RCO PULP LAE	CHECH	(S Silve	r (CNsol – ppr	n): n=257					
Pulp_Mine	0.69 – 2554.3	129.5	264.5	0.87	0.98	14.3				
Pulp_AAL	0.69 - 2206.3	123.2	229.5							
• =	Range	ĩ	S	Slope Regr.	Correl.	CV%ave ⁱ				
	Range O FIELD (MET)	ĩ	-							
	U U	ĩ	-							
NERC	O FIELD (MET) 0.017 – 0.480 0.017 – 0.549	x DUPLIC 0.057 0.057	ATES G 0.081 0.086	old (CNsol - pj 1.05	om): n=14 0.97	3 ⁱⁱ				
NERC Field_Orig	O FIELD (MET) 0.017 – 0.480	x DUPLIC 0.057 0.057	ATES G 0.081 0.086	old (CNsol - pj 1.05	om): n=14 0.97	3 ⁱⁱ				
NERC Field_Orig	O FIELD (MET) 0.017 – 0.480 0.017 – 0.549	x DUPLIC 0.057 0.057	ATES G 0.081 0.086	old (CNsol - pj 1.05	om): n=14 0.97	3 ⁱⁱ				
NERC Field_Orig Field_Dup Pulp_Orig Pulp_Rerun	O FIELD (MET) 0.017 - 0.480 0.017 - 0.549 NERCO PULP 0.017 - 2.57 0.017 - 2.54	x DUPLIC 0.057 0.057 RERUN 0.384 0.375	ATES G 0.081 0.086 3 Gold (0.651 0.643	old (CNsol - pj 1.05 CNsol - ppm): 0.99	om): n=14 0.97 n=55 1.00	3 ⁱⁱ 30.6				
NERC Field_Orig Field_Dup Pulp_Orig Pulp_Rerun	O FIELD (MET) 0.017 – 0.480 0.017 – 0.549 NERCO PULP 0.017 – 2.57	x DUPLIC 0.057 0.057 RERUN 0.384 0.375	ATES G 0.081 0.086 3 Gold (0.651 0.643	old (CNsol - pj 1.05 CNsol - ppm): 0.99	om): n=14 0.97 n=55 1.00	3 ⁱⁱ 30.6				
NERC Field_Orig Field_Dup Pulp_Orig Pulp_Rerun	O FIELD (MET) 0.017 - 0.480 0.017 - 0.549 NERCO PULP 0.017 - 2.57 0.017 - 2.54	x DUPLIC 0.057 0.057 RERUN 0.384 0.375	ATES G 0.081 0.086 3 Gold (0.651 0.643	old (CNsol - pj 1.05 CNsol - ppm): 0.99	om): n=14 0.97 n=55 1.00	3 ⁱⁱ 30.6				

Table 11.2: Summary of duplicate and check results - Candelaria historic drilling

i: Mean Coefficient of Variation (percent)

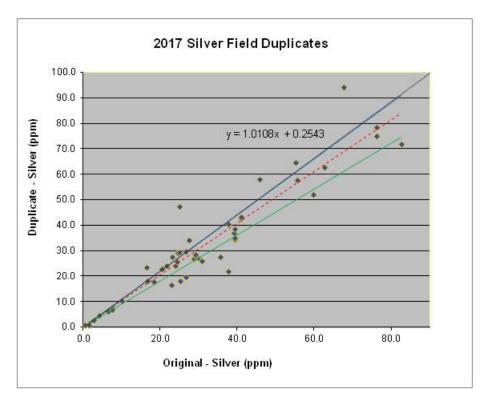
ii: Three samples from outside prospect removed.

11.3.2 QA/QC – Silver One

11.3.2.1 Silver One 2017 Sonic Drilling

QA/QC results from the 2017 Sonic drill program were previously reported by McCrea (2020) and are summarized below from this technical report. Full details can be found in the referenced report.

11.3.2.2 Certified Reference Material


Silver One used four certified reference materials ('CRM') with certified values for silver and gold purchased from Analytical Solutions Ltd., Canada, and prepared by Ore Research and Exploration Pty Ltd. of Australia (OREAS). The CRMs are listed in Table 11.3. The CRM was provided to Silver One in ~60 g pouches. Forty-seven (47) CRM's were submitted with the sonic drill samples and analyzed by Skyline labs. The CRM's showed two failures which were two OREAS 600 gold fire assay values.

Gold							
CRM ID	Malua (Aumula)	1*SD	± 2*SD		± 3*SD		Samples Analyzed
	Value (Au ppb)		Low	High	Low	High	
OREAS 600	200	6	188	212	182	218	12
OREAS 601	780	31	718	842	687	873	14
OREAS 602	2050	66	1818	2082	1752	2148	8
OREAS 60C	2470	80	2310	2630	2230	2710	13
Silver		•			•		
CRM ID		1*SD	± 2*SD		± 3*SD		Samples Analyzed
	Value (Ag ppm)		Low	High	Low	High	
OREAS 600	24.8	1.01	22.78	26.82	21.77	27.83	12
OREAS 601	49.2	2.02	45.16	53.24	43.14	55.26	14
OREAS 602	118	4.8	108.4	127.6	103.6	132.4	8
OREAS 60C	4.81	0.30	4.21	5.41	3.91	5.71	13

Table 11.3: 2017 CRM Samples for Sonic Drilling

11.3.2.3 Field Duplicates

Silver One submitted 1/16 splits of the sonic core material as duplicate samples for assaying during the 2017 program. Forty-seven field duplicates were inserted into the drilling sample sequence. These samples were assayed using the sample protocol as listed above. Figure 11.1 is the silver scatter plot of the original samples verses the duplicate samples for silver and gold. The black dashed line is an ideal 1:1 reference. The dashed red line is the trend line (with formula) of the data and the blue and green lines are +10% and -10% respectively.

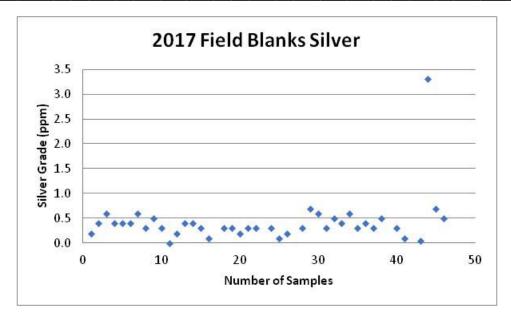


Figure 11.1: Sonic Drilling Field Duplicates Scatter Plot – Silver

The field duplicates have an apparent bias of original reporting greater than the duplicate, with generally poor precision.

11.3.2.4 Field Blanks

The field blanks were also inserted into the sample stream on a 1 in 20 basis and Silver One submitted 46 blanks for analyses during the program. The field blanks were locally sourced silica material that was purchased from Home Depot. Six samples of the blank material were submitted to ALS Global and returned values below detection limit. A plot of the field blanks for silver is shown in Figure 11-2. Some blanks show small traces of mineralization and three contaminated blanks were observed.

Figure 11.2: Sonic Drilling Field Blanks – Silver

11.3.3 Silver One 2019-2022 RC Drilling

The QA/QC program for the 2019-2022 drilling at Candelaria included the submission of Certified Reference Materials, blanks, field cutting duplicates, as well as the insertion of crushed duplicates and pulp duplicates at random intervals. QA/QC results for the 2019-2022 drilling are summarized in Shenk (2023). Certified Standards were inserted at a rate of one standard for every 17 samples (6% of total) and one blank for every 20 samples (5% of total). Core, pulp and crush duplicates combined were inserted at a rate of one duplicate per every 20 samples (5% of total). The standards used in the 2019-2022 Candelaria drilling program range in grade from 5.88 g/t Ag to 493.0 g/t Ag and were commercially sourced. Field core duplicates were obtained from quartered core, crush and 'pulp' duplicates were taken from coarse reject material or pulverized splits respectively. Blank material was sourced as sand from a Reno supply store or were Tertiary basalt chips sourced from site.

11.3.3.1 Certified Reference Material

Silver One used 10 certified reference materials ('CRM') with 5 CRMs being used from 2019 to 2021 and 5 used in 2022. The CRMs were purchased from Analytical Solutions Ltd., Canada and prepared by Ore Research and Exploration Pty Ltd. of Australia (OREAS) and were provided to Silver One in ~60 g pouches. The CRMs are listed in Table 11.4.

GOLD										
CPM ID Vears Used No Analyses 1 SE						SD	+ 2	SD		
		No. Analyses	Value (Au ppm)	100	Low	High	Low	High		
OREAS 600	2020-21	63	0.200	0.006	0.194	0.206	0.212	0.188		
OREAS 601b	2019-21	91	0.775	0.021	0.754	0.796	0.817	0.733		
OREAS 602b	2019-21	91	2.290	0.094	2.196	2.384	2.478	2.102		
OREAS 604b	2019-21	60	1.690	0.047	1.643	1.737	1.784	1.596		
OREAS 607	2020-21	74	0.690	0.024	0.666	0.714	0.738	0.642		
OREAS 611	2022	20	15.7	0.601	15.099	16.301	16.902	14.498		
OREAS 620	2022	53	0.685	0.021	0.664	0.706	0.727	0.643		
OREAS 622	2022	20	1.85	0.066	1.784	1.916	1.982	1.718		
OREAS 624	2022	20	1.16	0.053	1.107	1.213	1.266	1.054		
OREAS 680	2022	54	0.161	0.008	0.153	0.169	0.177	0.145		
			SILVER							
CRM ID	Years Used		Value (Ag ppm)	1 SD	± 1'	*SD	± 2°	2*SD		
			value (Ag ppill)		Low	High	Low	High		
OREAS 600	2020-21	63	24.8	1.01	23.79	25.81	26.82	22.78		
OREAS 601b	2019-21	91	49.2	2.02	47.18	51.22	53.24	45.16		
OREAS 602b	2019-21	91	118.0	4.0	114	122	126	110		
OREAS 604b	2019-21	60	493.0	9.0	484	502	511	475		
OREAS 607	2020-21	74	5.88	0.189	5.691	6.069	6.258	5.502		
OREAS 611	2022	20	80.0	1.61	78.39	81.61	83.22	76.78		
OREAS 620	2022	53	38.5	1.53	36.97	40.03	41.56	35.44		
OREAS 622	2022	20	102	3.3	98.7	105.3	108.6	95.4		
OREAS 624	2022	20	45.3	1.26	44.04	46.56	47.82	42.78		
OREAS 680	2022	54	10.5	1.2	9.3	11.7	12.9	8.1		
GOLD										

Table 11.4: 2019 - 2022 CRM Samples – RC Drilling.

Several sequential plots of returned Ag and Au values are shown below in Figure 11.3 to Figure 11.6.

All commercial standards used in the 2019 to 2022 RC drilling at Candelaria behaved well and with the exception of a mislabelled, possibly blank sample – did not show any laboratory issues. The average Ag and Au values returned from the standards show small biases compared to the certified values that generally range from $\pm 2\%$. The strongest bias was an average of -4.8% ppm Ag for OREAS 680.

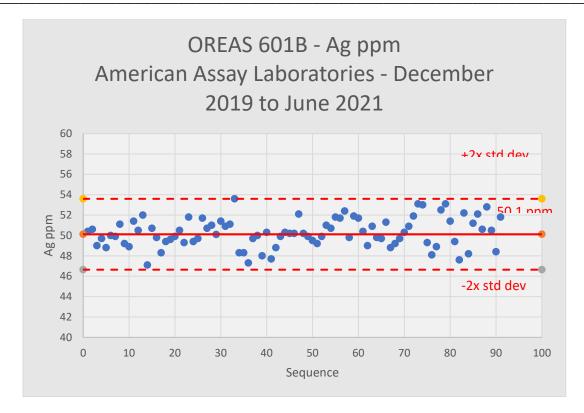


Figure 11.31: CRM 601b - sequential plot of ppm Ag

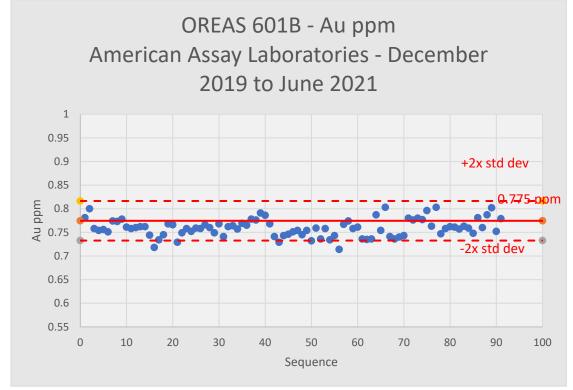


Figure 11.42: CRM 601b – sequential plot of ppm Au

Figure 11.5: CRM 680 - sequential plot of ppm Ag

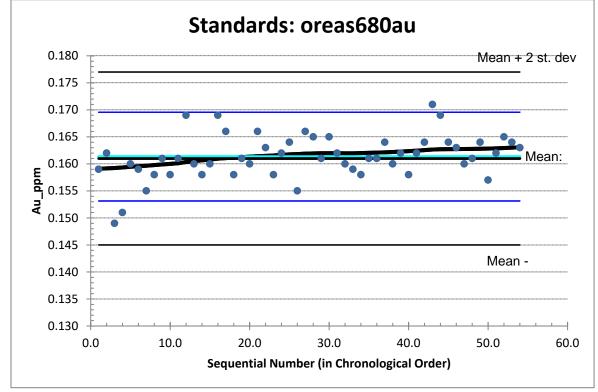


Figure 11.6: CRM 680 - sequential plot of ppm Au

11.3.3.2 Field, Crush and Pulp Duplicates

During 2019 to 2022 Candelaria RC drilling programs duplicate samples originating from three different sample handling points were submitted into the final sample assay stream. These were:

- Field Duplicates even split of the original RC chip sample as collected at the rig. Split samples were prepared by Silver One personnel using a riffle splitter and dried drill samples. Original and duplicate RC chip samples vary in weight from 0.3 kg to 7.2 kg. Field duplicates show field, preparation and analytical precision (or error).
- Coarse Crush Duplicates duplicate coarse crush sub-sample prepared by the laboratory. Crush duplicates show sample reduction and analytical precision (or error). AAL coarse crush (reject) samples comprise – 10 mesh material prepared using jaw and roll crushers.
- Pulp Duplicate duplicate pulp prepared by the laboratory after pulverizing the coarse crush material. Pulp duplicates show assay precision or error. AAL pulp samples comprise approximately 200 g of 150 mesh material pulverized using a ring mill.

Results are reviewed in detail below separately for 2019 – 2021 drilling and for the 2022 drilling – both with a focus on total Ag and Au results.

The database for the duplicate review of 2019 to 2021 drilling comprised: 139 field duplicates; 120 coarse crush duplicates; and 102 pulp duplicates which results in an average insertion rate of approximately 1 duplicate for every 17 assay samples (~16%). Approximately half of all samples had values below the detection limit. The duplicate review comprised basic statistics for all datasets; bias (x-y) plots with RMA correlation lines; and relative difference plots (RDP).

A summary of statistical results for Total Ag and Au results for the Field, Crush and Pulp duplicate sample sets is in Table 11.5 while x-y (bias) plots are shown in Figure 11.7 to Figure 11.12.

Table 11.5: Summary of duplicate sample results total Ag and Au - 2019 to 2021 RC)
drilling.	

FIELD DUPLICATES Silver (ppm) – 62 samples below detection removed (n=77)										
	ĩ	S	Correl.	CV%						
Field_Orig	45.6	187	0.98	30.2						
Field_Dup	49.2	209								
CRUSH DUPLICATES Si	lver (ppm) –	54 samples	below detection	removed (n=	=66)					
Crush_Orig	4.82	11.9	0.97	26.8						
Crush_Dup	5.27	12.2								
PULP DUPLICATES Silv	/er (ppm) – 3	39 samples	below detection I	removed (n=	68)					
Pulp_Orig	6.7	20.5	1.00	19.1						
Pulp_Dup	6.6	19.4								

FIELD DUPLICATES Gold (ppm) – 8 samples below detection removed (n=130)										
	ĩ	S	Correl.	CV%						
Field_Orig	0.058	0.219	0.99	29.5						
Field_Dup	0.066	0.269								
CRUSH DUPLICATES C	Gold (ppm) – 1	0 samples be	elow detection re	emoved (n=1	10)					
Crush_Orig	0.030	0.062	0.65	36.1						
Crush_Dup	0.036	0.090	(0.98)*	(33)*						
PULP DUPLICATES Gold (ppm) – 5 samples below detection removed (n=103)										
Pulp_Orig	0.020	0.021	1.00	19.1						
Pulp Dup	0.020	0.022								

*: Recalculated with two outliers removed

For 2019 to 2021 RC drilling, duplicate results show the following behaviour.

- Average Ag and Au values for field duplicates are significantly higher (approx. 10x) than averages for crush and pulp duplicates.
- Silver generally behaves well in all duplicates field, crush and pulp.
- Coefficient of variation (CV%) for silver is generally about 5-10% higher than desirable for all splits.
 - Possibly due to Ag mineralogy nugget effects especially with lower ICP values?
- Average Ag and Au values from both field and crush duplicate samples are consistently 8-20% higher than original samples – reason unknown but may be related to sample splitting issue at drill rig and illustrated by poor correlation in field sample - duplicate weights.
- Coefficient of variation (CV%) for gold is generally about 10% higher than desirable for all splits.
 - CV% gold is approximately the same for field and crush duplicates; crush CV% should be significantly lower
 - The elevated CV% may be due to significant outliers (Samples 204136, 203842, and 203150) which may be mislabelled or mixed samples?

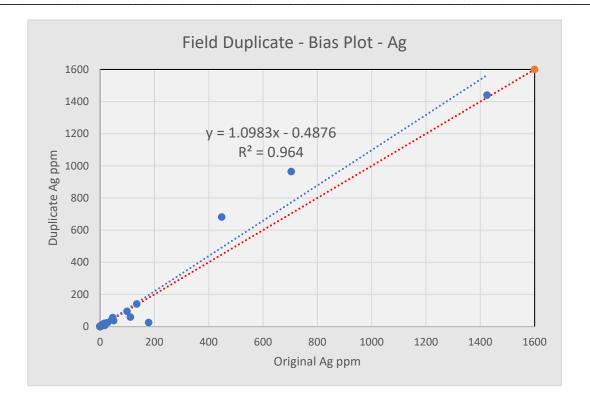


Figure 11.7: Field duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling.

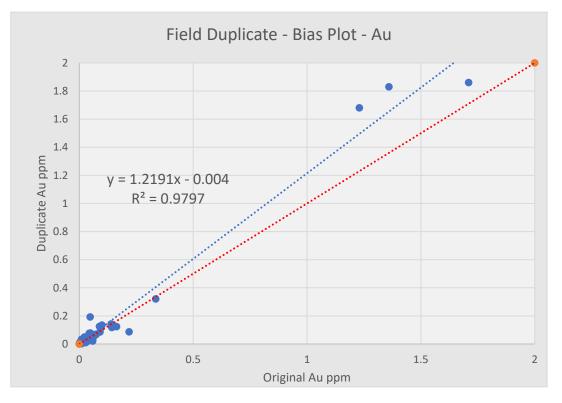


Figure 11.8: Field duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling

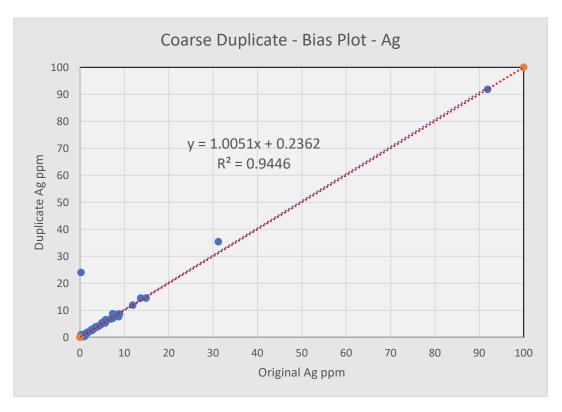


Figure 11.9: Crush (coarse) duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling

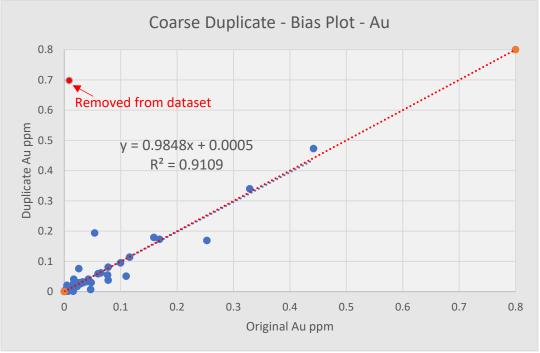


Figure 11.10: Crush (coarse) duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling

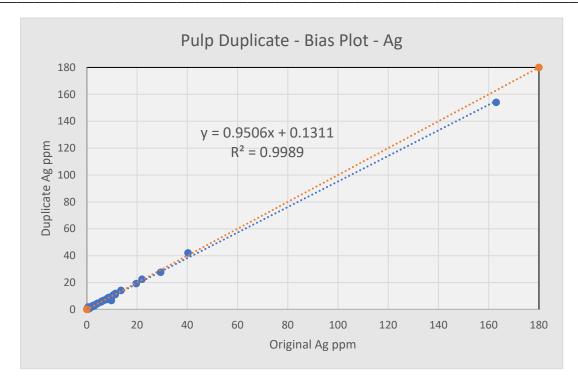


Figure 11.11: Pulp duplicates x-y (bias) plot ppm Ag – 2019-2021 RC drilling

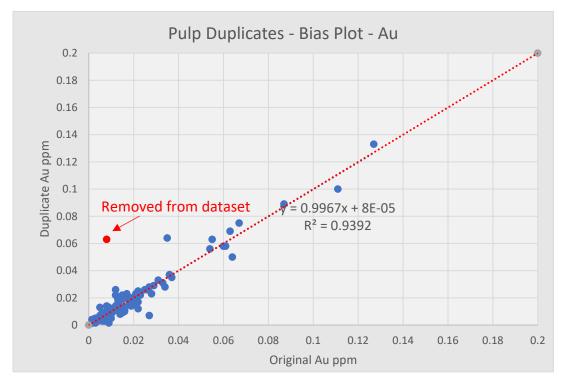


Figure 11.12: Pulp duplicates x-y (bias) plot ppm Au – 2019-2021 RC drilling

The duplicate database for 2022 RC drilling comprised 64 field duplicates, 50 crush duplicates, and 35 pulp duplicates which reflect insertion rates, based on 2950 total RC assay samples, of approximately 1 per 46 original RC samples, 1 per 59 original RC samples and 1 per 84 original RC samples respectively. In total, duplicate samples are inserted at a rate of 1 per 20 RC samples. Only total Au and Ag values were initially considered in this review - being the metals of principal interest.

The duplicate review comprised basic statistics for all datasets; bias (x-y) plots with RMA correlation lines; and relative difference plots (RDP). X-Y plots for Original Ag value versus Duplicate Ag value and Original Au value versus Duplicate Au value for Field, Crush and Pulp duplicates are shown in Figure 11.13 to Figure 11.18 below. Key metrics for the Field, Crush and Pulp Original and Duplicate samples are summarized in Table 11.6.

Table 11.6: Summary of duplicate results total Ag and Au - Candelaria 2022 RC drilling

FIELD DUPLICATES Silver (ICP - ppm): n=64										
	Range	ĩ	S	Correl.	CV%ave*	MPD**				
Field_Orig		17.9	77.8	0.98	19.2	11.6				
Field_Dup		17.5	76.4							
CRUS	CRUSH DUPLICATES Silver (ICP - ppm): n=50									
Crush_Orig		12.0	23.9	0.96	19.7	11.1				
Crush_Dup		12.2								
PULP DUPLICATES Silver (ICP - ppm): n=35										
Pulp_Orig		6.7	10.6	1.05	20.3	9.3				
Pulp_Dup		6.6	10.9							

FIELD DUPLICATES Gold (FA - ppm): n=64									
	Range	ĩ	S	Correl.	CV%ave*	MPD**			
Field_Orig		0.056	0.147	1.14	30.7	28.5			
Field_Dup		0.057	0.167						
CRUSH	DUPLIC	ATES O	Gold (FA	\ - ppm): I	n=50				
Crush_Orig		0.063	0.093	1.00	28.0	21.3			
Crush_Dup		0.060	0.093						
PULP DUPLICATES Gold (FA - ppm): n=35									
Pulp_Orig		0.048	0.062	1.00	19.8	18.4			
Pulp_Dup		0.048	0.062						

*: Mean percent coefficient of variation

**: Mean percent difference.

Most Original and Duplicate values from 2022 RC drilling correlate well and only two samples appear to be outliers and are circled in Figure 11.14 and Figure 11.16 below. Both outliers are Au values in Field and Crush duplicates. These outliers may reflect mislabelled samples or may just reflect erratic gold distribution in the mineralization. Sample 94969 is mis-identified as a core dup – it is an assay sample. Sample 194180 was submitted as a crush duplicate.

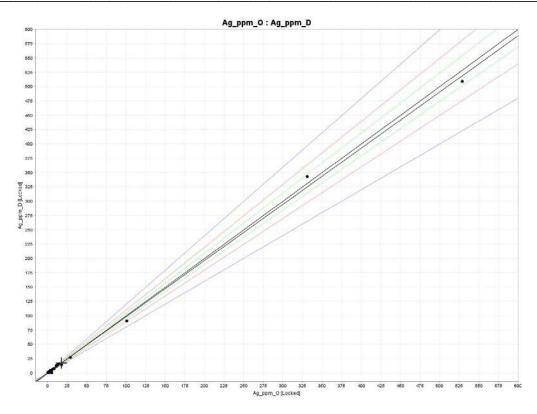


Figure 11.13: Field duplicates x-y (bias) plot ppm Ag – 2022 RC drilling

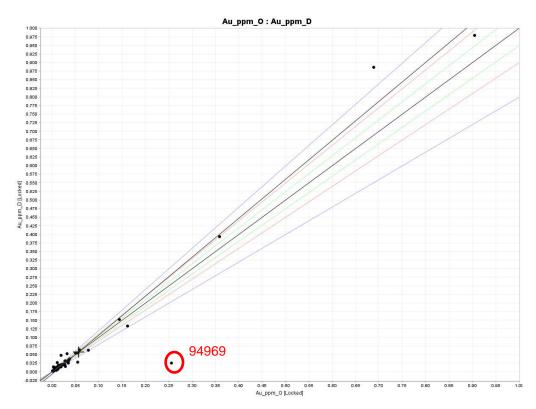


Figure 11.14: Field duplicates x-y (bias) plot ppm Au – 2022 RC drilling

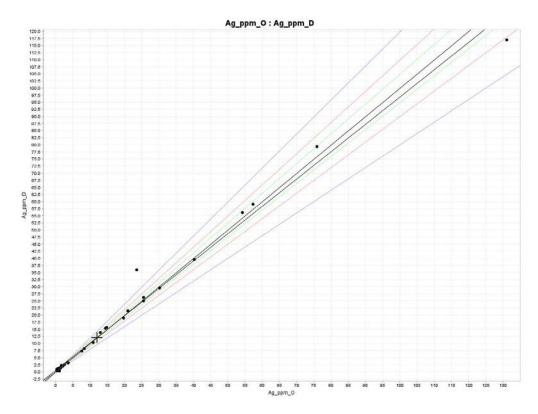


Figure 11.15: Crush (coarse) duplicates x-y (bias) plot ppm Ag – 2022 RC drilling



Figure 11.16: Crush (coarse) duplicates x-y (bias) plot ppm Au – 2022 RC drilling

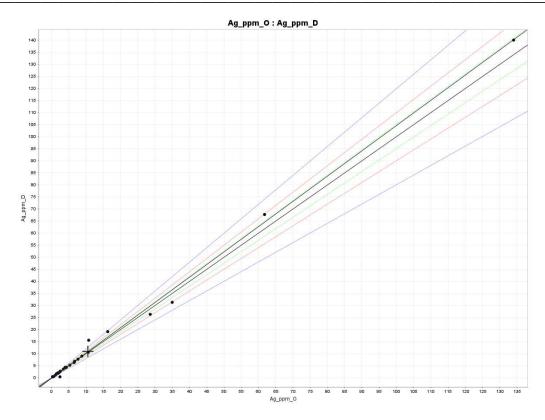


Figure 11.17: Pulp duplicates x-y (bias) plot ppm Ag – 2022 RC drilling

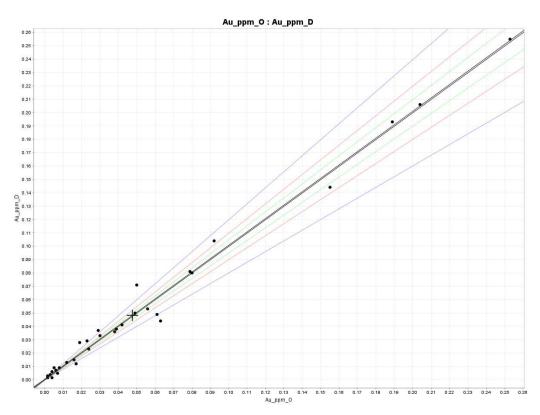


Figure 11.18: Pulp duplicates x-y (bias) plot ppm Au – 2022 RC drilling

Some observations on the total Ag and Au duplicate results from 2022 RC drilling are:

- The Mean Percent Difference (MPD) for Au is generally about twice the MPD for Ag and confirms more erratic Au distribution in mineralization.
- In general, MPD should decrease significantly from Field to Crush to Pulp with decreasing particle size. However, for Ag MPD only decreases modestly from 11.6 to 9.3 and again supports very even distribution of Ag mineralization. MPD for Au decreases significantly from 28.5 to 18.4 again reflecting erratic distribution.
- As a general rule of thumb, field duplicates should be <30% MPD, coarse duplicates should be <20% MPD and pulp duplicates < 10% MPD. All the duplicates generally meet these criteria except for Au in pulp duplicates (18.4 MPD) again reflecting erratic Au mineralization. Broader limits are generally acceptable for sample results less than 15x the element detection limit which is the case for many of the Candelaria duplicates.

11.3.3.3 Field Blanks

During the 2019 - 2022 Candelaria RC drilling program, field blanks sourced from bags of commercial play sand were inserted into the sample stream at a rate of approximately one blank every 16 RC chip samples. The blank samples serve to monitor for Ag and Au cross contamination due to poor crusher or pulveriser cleaning after processing mineralized samples and to a lesser extent to flag sample switching.

All samples during the current drill campaign were analyzed at American Assay Laboratories ("AAL") in Sparks, Nevada, USA (ISO accredited Laboratory, ISO/IEC 17025:2017). Samples were analyzed for Ag by ICP-OES while Au was analyzed by FA with ICP finish. Samples over 100 g/t Ag were analyzed by gravimetric methods.

The database of field blanks for Candelaria RC holes completed from 2019 to 2022 comprises 551 blanks reporting both ppm Ag and ppm Au. Time sequential plots for Ag and Au are shown in Figure 11-19 and Figure 11-20 below. The upper limit for Ag is taken as 3 x lab detection or 1.5 ppm Ag and for Au taken as 5 x lab detection or 0.015 ppm Au because of the noisy data. There was only one minor failure for Ag (sample 95715 – 1.7 ppm Ag) and is an improvement on the failure rate for pre-2022 drilling. Four samples failed for Au (172211/95011/196098/196311) none of which coincide with Ag failures.

The Au failures reflect noisy data from low to highly anomalous Au in the material used for the blanks (Figure 11-19 and Figure 11-20). The blank material appears to contain a low background concentration of Au at around the AAL detection limit of 0.003 ppm together with more anomalous scattered values from 0.01 ppm to 0.1 ppm (and one highly anomalous result of 0.66 ppm Au).

The material used for the Candelaria blanks is suitable for monitoring possible Ag contamination but, because of the common results near or above Au detection limit, is not suitable for monitoring possible Au contamination. A better source of reliable coarse blank material should be located for use in future drilling programs.

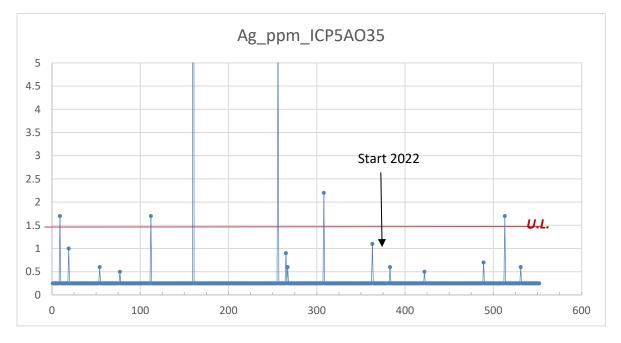


Figure 11.19: ppm Ag in field blanks – Candelaria 2019 - 2022 RC drilling

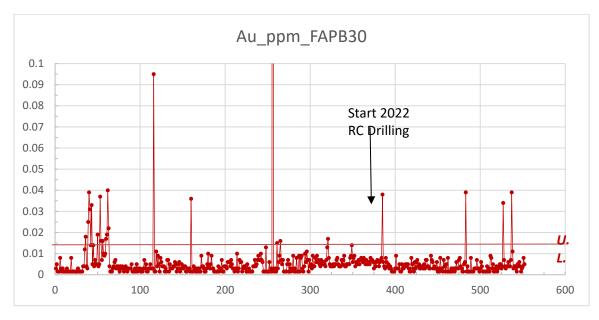


Figure 11.20: ppm Au in field blanks – Candelaria 2019 - 2022 RC drilling

11.3.3.4 Check Assays

Subsequent to the 2022 Candelaria RC drilling program, 447 pulp samples (307 from the 2019 to 2021 RC program and 140 from the 2022 RC program) were sent to Paragon Geochemical (Paragon) in Reno, Nevada as a third-party QC check on the primary American Assay Laboratories (AAL) analytical results. Both AAL and Paragon are ISO 17025:2017 certified

laboratories. The primary AAL and secondary Paragon analytical methods used for the pulps are summarized in Table 11.7. All samples were assigned new assay numbers for submittal to Paragon.

Procedure	AAL	D.L.	U.L.	Paragon	D.L.	U.L.	Remarks
		g/t	g/t		g/t	g/t	
Total Ag	ICP-5A035	0.5	100	ICP-33MA-	0.5	100	Multi-acid digest. & 0.5 g
				OES			AAL & 0.25 g Paragon
Ag O.L.	GravAg30	10	10,000	AgGR30	5	10,000	
Cyanide	AgCN50	0.01	300	AgCN15	0.2	50	50 g AAL sample vs 15 g
soluble Ag							Paragon
Cyanide	-	-	-	AgCN10	0		
soluble Ag							
0.L.							
Total Au	FA-PB30-	0.003	15	AA30	0.005	5.0	Paragon – Aqua Regia
	ICP						digest. & AA finish
Au O.L.	GRAVAu30	0.103	10,000	AuGR30	0.14	10,000	Both standard 30 g FA
Cyanide	AuCN50	0.01	100	AuCN15	0.03	50	50 g AAL sample vs 15 g
soluble Au							Paragon

Table 11.7: Summar	y of AAL and Pa	aragon analyti	ical methods us	sed for check pulps

Of the 447 pulps submitted to Paragon, 183 samples (41%) returned Below Detection Limit (BDL) for Total Ag (also 183 samples BDL at AAL). Eighteen of the 2020 AAL samples did not include CN soluble results for Ag or for Au. Basic statistics for the original (AAL) and check (Paragon) samples are shown in 811.7. Sample pairs with one or both samples BDL were omitted for the review and discussion below except as noted.

In general, only Total Ag values show good correlation, low scatter and a mean percent difference (MPD) in the range that would be expected for interlab pulp assaying. This result includes one outlier and when the outlier is removed the metrics improve further.

Sample pairs below detection mint officied for correlation and MFD						
Total Silver (ppm): n (pairs)=250. Outlier removed in brackets.						
	п	\widetilde{x}	S	CV%	Correl.	MPD*
AAL	263	15.1	52.6	349.5 (348.9)	0.90	15.2
	(262)	(15.1)	(52.7)		(0.97)	(14.9)
Paragon	270	14.0	50.6	360.6 (360.6)		
_	(269)	(14.1)	(50.7)			
CN Soluble Silver (ppm): n (pairs)=235. Including samples BDL in brackets.						kets.
AAL	399	4.2 (5.37)	15.1	363.5 (700.7)	1.34	54.1
	(447)		(37.6)	· · ·	(1.33)	(48.3)
Paragon	238	6.8 (5.90)	21.2	314.1 (850.5)		
	(447)		(50.2)			

Table 11.8: Summary of Paragon check assay results - Candelaria SVE RC drilling.
Sample pairs below detection limit omitted for correlation and MPD

Total Gold (ppm): n (pairs)=327. Including samples BDL in brackets.						
	п	ĩ	S	CV%	Correl.	MPD*
AAL	406 (447)	0.049 (0.049)	0.124 (0.15)	252.4 (302.9)	1.02 (1.02)	31.5 (40.3)
Paragon	340 (447)	0.060 (0.051)	0.134 (0.15)	223.5 (330.2)		
CN Soluble Gold (ppm): n (pairs)=50. Including samples BDL in brackets.						
AAL	166 (429)	0.070 (0.033)	0.142 (0.112)	203.0 (337.9)	1.10 (1.05)	79.4 (78.9)
Paragon	52 (447)	0.165 (0.036)	0.203 (0.115)	122.9 (317.7)	x x	· · · ·

*: Mean percent difference - includes all valid pairs.

Total Au also displays reasonable correlation between original and check samples although there is a large scatter of results at lower values. Only 39 samples (9%) returned values over 0.1 g/t Au with the highest result being 1.93 g/t Au from both AAL and Paragon. The mean Paragon Au value of 0.06 g/t compares with 0.05 g/t from AAL and is mainly skewed by systematically higher Paragon results on average below 0.1 g/t Au. The MPD value of 40.3 is significantly higher than would be expected even given the erratic nature of gold mineralization – for example, recent AAL intra lab pulp duplicates had an MPD of 18.4 and identical mean values.

Both CN soluble Ag and CN soluble Au show significant differences in mean values between original and check samples when samples BDL are excluded (Table 11.8). The means are strongly influenced by the large number of samples BDL – especially for the Paragon CN Soluble Ag which has a higher detection limit than AAL (0.2 g/t versus 0.01 g/t) and therefore a higher number of excluded samples (209 at Paragon versus 48 for AAL).

The results are also influenced, although to a lesser extent, for CN Soluble Au which also has a higher Paragon detection limit (0.03 g/t versus 0.01 g/t) and more samples excluded (395 at Paragon versus 263 for AAL). When all samples BDL are included, the mean CN Soluble Ag and CN Soluble Au values from Paragon improve and are approximately 10% higher than from AAL.

Some general observations on the Ag and Au Paragon check results are:

- A comparison of Total Ag between Paragon and AAL showed good correlation and low scatter despite the 0.25 g Paragon sample size versus the 0.5 g AAL sample size. The results confirm the AAL results for Total Ag and the uniform nature of the Ag mineralization.
- A comparison of Total Au between Paragon and AAL showed reasonable correlation and similar mean values with samples BDL included. The plots and MPD show elevated scatter despite the identical assay methods and significantly higher than AAL intralab duplicate pulps. Part of the issue is likely to be the Paragon Aqua Regia (partial) digestion versus the AAL 4-acid digestion but perhaps also the older pulps required agitation and mixing prior to assaying to ensure more uniform distribution of gold.
- The checks for CN soluble Ag and Au show reasonable correlation, however, the Paragon samples average approximately 10% higher than AAL results and the scatter of results as measured by MPD is unreasonably high for pulp samples. The Paragon samples used 15 g while AAL used 50 g but this is unlikely to explain all the scatter. Details of AAL CN methodology is not known and should be requested.

11.3.3.5 Sieve Screen Checks

Forty-eight screen checks were completed by Paragon in 2022 to check if the pulps had been prepared by AAL to their stated parameter of 90% passing 150 mesh. Paragon tested 10 g of pulp from approximately 10% of the total pulps submitted.

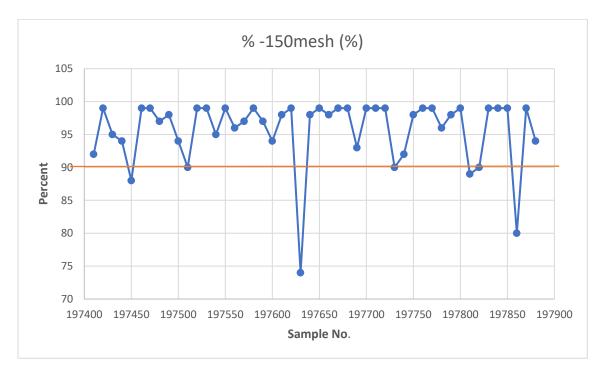


Figure 11.21: Percent pulp passing 150 mesh – Paragon sieve checks

There are four failures (two serious) in the sieve checks or an 8% failure rate. If the additional three checks at a borderline 90% are included the failure rate would be 15%. The average of all 48 sieve checks was 96% passing 150 mesh.

11.4 QP Comments on Sampling and QA/QC

In general, Silver One has run industry standard or better core and RC sampling and QA/QC programs.

The QP recommends future drill programs consider:

- Careful control (handling and sampling) of RC field duplicate samples so that weights of original and duplicate samples are better correlated.
- A reliable source of coarse blank material needs to be located with both Ag and Au values below detection limits. The option of last resort would be to purchase a commercial blank.
- A subset of samples should continue to be sent to a secondary laboratory for check assays. The analytical procedures used by the secondary laboratory need to be closely aligned with the primary laboratory.
- The number of different certified standards used should be restricted to 4 to 5 so that more results are returned for each standard and will allow for a more meaningful statistical study and would facilitate recognizing analytical trends and issues. Consideration should be given to developing project-specific matrix-matched standards.

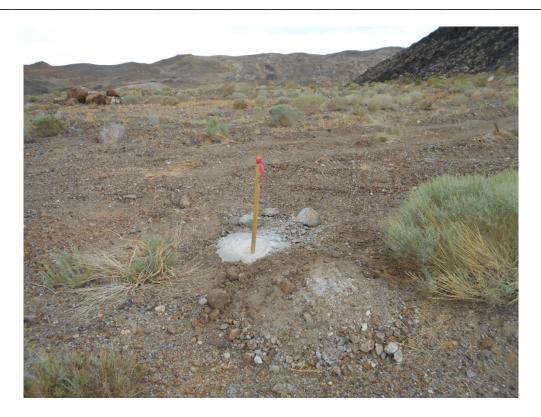
12.0 DATA VERIFICATION

The author visited the subject property and area in August of 2006, on July 9th to 11th, 2018, and again on June 9th, 2023. During the 2006 site visit for Silver Standard, the author visited the two leach pads and the two open pits and collected verification samples. During the 2018 site visit the following data verifications were preformed to verify the data presented by Silver One:

- examination of sonic drill collars from the 2017 drilling program on the two leach pads and the east and west low-grade stockpiles, Photographs 12.1 to 12.4 where Photo 12.4 shows a sonic drill collar from LP1 with a 1992 sonic drill collar marker in the background;
- verification sampling of the two leach pads, the two low-grade stockpiles and the two open pits, results are shown in Table 12.1, sample locations are shown on Figure 12.1 and in Photographs 12.5 to 12.6.
- bulk densities for the 2 leach pads were verified by comparing recorded mine production placed on the leach pads to solid model volume.

During the 2023 site visit the following data verifications were performed

- examined diamond drill core, selected holes in Photographs 12.7 to 12.8
- examined metallurgical sample and core storage in Photographs 12.9 to 12.11

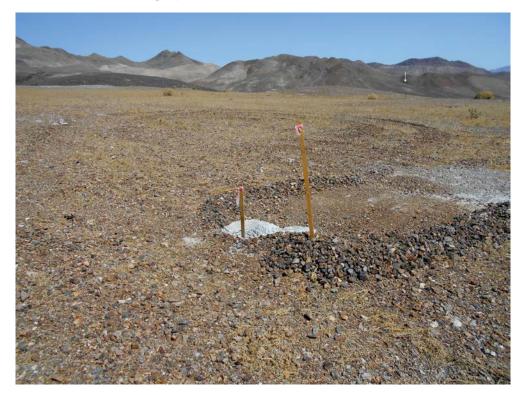

During the preparation of this report the following data verifications were preformed:

- review of previous technical reports from property and properties in the area;
- manual verification of the drill hole and surface data while constructing the resource database.

The author is of the opinion that these data are adequate for the purposes used in this technical report.

.						
	Sample-ID	Width	Ag (ppm)	Au (ppm)	Zone	
	2224	grab	21.6	0.111	LG Stockpile East	
	2225	grab	41.8	0.154	LG Stockpile West	
	2226	grab	257.99	0.145	LP2	
	2227	grab	37.5	0.107	LP1	
	2228	1m chip	0.8	0.033	Mt. Diablo	
	2229	grab	194.65	5.090	Northern Belle	

Table 12.1: Verification Sample Results, Candelaria


Photograph No. 12.1: Low-Grade Stockpile East Sonic Drill Collar

Photograph No. 12.2: Low-Grade Stockpile West Sonic Drill Collar

Photograph No. 12.3: LP2 Sonic Drill Collar

Photograph No. 12.4: LP1 Sonic Drill Collar

Photograph No. 12.5: Sample Location - 2226, LP2

Photograph No. 12.6: Sample Location - 2229, Northern Belle Pit

Photograph No. 12.7: Core Layout Area

Photograph No. 12.8: Core Samples of Lower Candelaria Shear, Rx10

Photograph No. 12.9: Shipping Containers used For Sample Storage

Photograph No. 12.10: Core Storage in Shipping Container

Photograph No. 12.11: Metallurgical Sample Storage

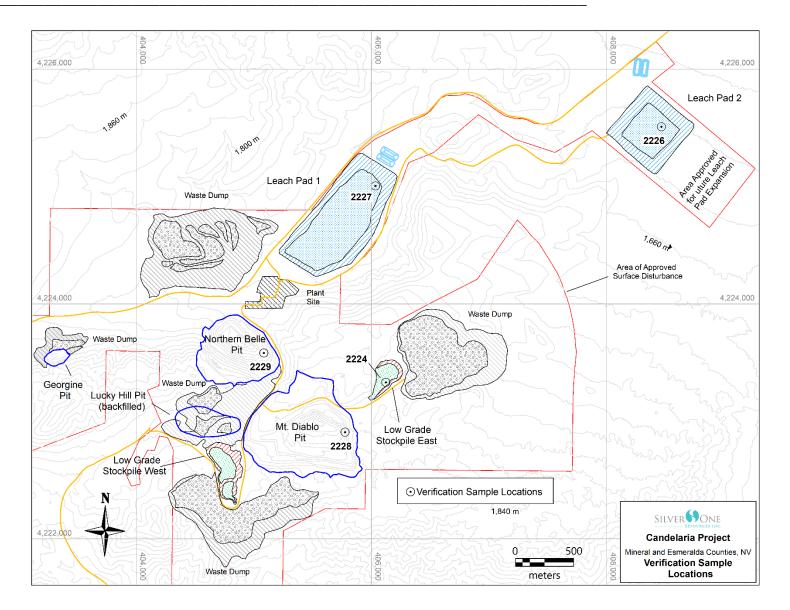


Figure 12.1: Verification Sample Locations

13.0 MINERAL PROCESSING and METALLURGICAL TESTING

Historic silver recoveries by heap-leaching operations between 1980 to 1990 (Occidental Minerals Corporation 1980-1982 and NERCO 1985-1990) averaged 51%. Kinross mined the deposit between 1993 and 1997 and ceased leaching operations in 1999 recovering 42% of the silver (Stevens, 2001), potentially leaving a significant amount of silver in leach pad 2 still available for leaching.

Silver One acquired the Candelaria property in 2017 and shortly thereafter initiated metallurgical testing to evaluate possible processing techniques to recover silver from near-surface mineralization, stockpiles and leach pads material. Recent testing conducted by SVE suggest that Candelaria's existing mineral resources may be processed by low-cost open-pit, cyanide heap-leach methods, similar to those used in the past. However, better silver recoveries may be achieved by using High-pressure Grinding Roller ('HPGR') technology, potentially improving the economics of the project.

Tests completed to date on fresh mineralized material show that addition of HPGR to the crushing circuit increases the historic silver recoveries (42% and 51%) to an average of 67% of the silver, and nearly 50% of the gold (oxide and mixed), which could positively impact the operational results. Cyanide leaching silver recoveries on leach pad material crushed with HPGR to 1.7mm ranges from 29% (LP1) to 40% (LP2).

Silver One is also testing new technologies which have shown the potential to improve the silver recoveries of leach pad material to 63% (LP1) and 69% (LP2). These new technologies are described at the end of this section.

Year(s)	Laboratory	Material	Description	Results
2018	McClelland	LP1 & LP2 comps., and LGSP	Bottle roll cyanidation and ATS leach on 3 grind sizes (-1.7 mm/-212µm/-75 µm, LGSP column 37.5mm feed size	43-60% Ag recov. on -75 µm. 30% Ag recov. after 80 days with column test. ATS results similar.
2018 - 2019	KCA	LP1 & LP2 comps.	Cyanidation bottle roll tests	41-60% Ag recov. 20-37% Au recov. Increased with higher cyanide conc.
2018 - 2019	KCA	LP1 & LP2 comps.	Column tests 120 days	25-40% Ag recov. 20-27% Au recov. Increased with finer 1.7mm grind.
2022	KCA	3 bulk samples Mt. Diablo; Oxide/Mixed	Bottle roll	Oxide: 60% Ag recov. 73% Au recov. Mixed: 27-46% Ag recov. 62-73% Au recov.
2022	KCA	3 bulk samples Mt. Diablo; Oxide/Mixed	Column tests ~130 days; -3/4" & - 1.7mm HPGR	Oxide: 48% Ag recov. 76% Au recov. Mixed: 30-40% Ag recov. 48-63% Au recov. Above with -1.7mm material.
2022	KCA	Core samples Mt. Diablo; Oxide/Mixed/Sulphide	Bottle roll; -0.11mm grind	Oxide: 60-76% Ag recov. 68% Au recov. Mixed: 70-77% Ag recov. 19-44% Au recov. Sulph.: 44-51% Ag recov. 1-3% Au recov.
2022	KCA	Core samples Mt. Diablo; Oxide/Mixed/Sulphide	Column tests ~160-180 days; -1" & - 1.7mm HPGR	Oxide: 54-68% Ag recov. 65-75% Au recov. Mixed: 71-73% Ag recov. 10-45% Au recov. Sulph.: 54-63% Ag recov. 3-5% Au recov. Above with -1.7mm material.
2022	KCA	Core samples Mt. Diablo; Sulphide	Flotation-cyanidation tails; -0.11mm	Sulph.: 71-84% Ag recov. 75-89% Au recov.
2023	Extrakt	LP1 comps.	Agitated non-cyanide; 1.7mm-75 µm	49-71% Ag
2024	Extrakt	LP1 & LP2 comps.; core samples Mt. Diablo	Column non-cyanide; all 1.1-1.7mm	Mixed.: 66% Ag recov. LP1: 63% Ag recov. LP2: 69% Ag recov.
2024	Extrakt	LP1 & LP2 comps.; core samples Mt. Diablo	Agitated non-cyanide; all 1.7-250 μm	Oxide: 68-71% Ag recov. Mixed: 78-81% Ag recov. Sulph.: 26-59% Ag recov. LP1: 51-59% Ag recov. LP2: 48-51% Ag recov.

A summary of metallurgical testing completed by Silver One is in Table 13.1.

Other than the known test results summarized above and to the best of the author's knowledge there are no other known processing factors or deleterious elements that could have a significant effect on potential economic extraction.

13.1 Silver Standard 1999 to 2000

By 2001 the Candelaria mineralization had been mined by open-pit methods and processed by heap leaching for over 20 years. During this time extensive metallurgical testing was conducted by its various operators in addition to the heap leach production records.

According to KCA's investigations commissioned by SSR, reported in a letter dated June 11, 1999, finds that to date for the existing Leach Pad 1, a silver recovery of 51.5 percent, on a fire assay basis; and 86.2 percent, on a cyanide soluble basis was achieved; and considered the leach pad essentially complete in the recovery of leachable silver. KCA also found that to date for the existing Leach Pad 2, a silver recovery of 42.4 percent, on a fire assay basis; and 71.3 percent, on a cyanide soluble basis; and considered the leach pad to still contain a limited amount of leachable silver.

Between late 1999 and early 2000, SSR evaluated possible processing techniques and scenarios for the processing of additional lode and stockpile material, as well as the further processing of the leach pads. (Diaz, R., pers. comm., 2025)

During 2000, SSR commissioned KCA to conduct testing on composites from reverse circulation drill-hole rejects to evaluate various milling scenarios. The testwork included grinding flotation, direct cyanidation and a combination of the two processes. The results indicate that the maximum silver (45% to 88%) and gold (24% to 78%) extraction is achieved by direct cyanidation. A combination of flotation followed by the cyanidation of the flotation tailings did not improve the overall recovery (Beattie, 2000). Given the range of extractions, Beattie's recommendations included further investigation of materials tested as well as optimization tests for optimum economic returns on the project.

13.2 Silver One 2017 to Present

An extensive and ongoing metallurgical program, testing different silver recovery processes, has been underway since 2017. Work to date has been conducted in three separate laboratories on: a) leach pad and low-grade stockpile ('LGSP') samples obtained from the Company's sonic drilling completed in late 2017- early 2018, b) fresh in-ground samples from the Company's diamond drilling conducted around Mount Diablo between April and August 2022, and c) bulk samples collected with a backhoe from the bottom of the Mount Diablo pit in August 2023. Metallurgical drill hole and bulk sample locations are shown in Figure 13.1.

13.2.1 Heap Leach Pad and LGSP Testing

13.2.1.1 McClelland 2018

Silver One contracted McClelland Laboratories Inc., of Sparks, Nevada (McClelland) in 2018 to conduct cyanide and ammonium thiosulfate leach testing on composites of leach pad ("LP") material and of low-grade stockpile ("LGSP") obtained from the sonic drill holes drilled on the leach pads of the Candelaria Mine.

McClelland tested six composite samples representative of the leach pads (three of each leach pad 1 ("LP1") and leach pad 2 ("LP2") with cyanidation leach and ammonium thiosulfate (ATS) leach. In both of these systems, tests were conducted on each composite at feed sizes of 80% -1.7mm. 212µm and 75µm. Composite average silver head grades ranged from 35 to 57 g/t. Average gold grades ranged from 0.07 to 0.24 g/t.

A composite sample of material representing a low-grade stockpile (designated as the LGSP composite) was also subjected to testing. A single cyanidation bottle roll test was conducted on this composite at an 80% -1.7mm feed size, as well as a cyanidation column leach test at an 80% - 37.5mm feed size. Average head grades of the LGSP composite were 24 g/t and 0.15 g/t Au.

At the finest grind size tested (80% -75µm) silver recoveries ranged from 42.9% to 60.4%. Gold recoveries varied widely ranging from <4% to 57.1%.

All composites were sensitive to feed size. Silver and gold recoveries increase with decrease in feed size. On average silver recovery was 22% higher for the 75µm feeds than from the 1.7mm feeds.

The LGSP composite column test silver and gold recoveries were 29.6% and 50% in 80 days of leaching the material at 37.5mm feed size. Silver and gold recoveries by ATS leaching were similar to recoveries by cyanidation leaching.

13.2.1.2 Kappes, Cassiday and Assoc. (KCA) – 2018 to 2023

During late 2018 and 2019, KCA conducted bottle roll leach tests and column leach tests on composite samples from LP1 and LP2. Subsequently, between August 2022 and July 2023, KCA conducted similar set of tests on bulk samples from the bottom of the Mount Diablo pit, as well on core sample material (oxide, mixed and sulphide ores) from diamond drill holes drilled in the Mount Diablo pit area. Sulphide samples were also subjected to flotation testing followed by cyanidation of the tailings.

Bottle roll tests and column HPGR-heap-leach tests were completed on two composite samples representative of each of the leach pads, LP1 and LP2. SVE geologists prepared the samples at the mine-site by extracting a split of all of the holes drilled in LP1 (17 drill holes) and LP2 (10 drill holes). The gold and silver head grades are summarized in Table 13.2.

KCA Sample No.		Descrip	otion		Average Assay, Au g/t	Average Assay, Ag g/t	Weighted Avg. Head Assay, Au g/t	Weighted Avg. Head Assay, Ag g/t
82178 A	LP1				0.096	44.60		
82180 A	LP1	Target	p80	4.00			0.116	46.77
82181 A	LP1	Target	p80	1.70			0.122	47.64
82179 A	LP2				0.093	53.11		
82182 A	LP2	Target	p80	4.00			0.111	55.12
82183 A	LP2	Target	p80	1.70			0.094	56.57

 Table 13.2: Candelaria Project Summary of Head Analyses - Leach Pad Composite

 Samples

Results of the bottle roll test work are summarized in Table 13.3. One-kilogram samples were pulverized to 0.15 millimeters (100 mesh) and utilized for bottle roll leach testing. LP1 shows a decreased extraction for gold from 37% to 32% with the higher target sodium cyanide leach solution. Silver extraction increased from 41% to 45% with the increased sodium cyanide leach solution target. LP2 shows an increased extraction for gold with the increased sodium cyanide target leach solution from 20% to 26% while silver extraction increased from 54% to 60%.

KCA Sample No.	Description	Target NaCN gpL	Head Average Au g/t	Calculated Head Au g/t	Au Extracted %	Leach Time hours	Consumption NaCN kg/MT	Addition Ca(OH)2 kg/MT
82178 A	LP1	1	0.096	0.09	37%	96	0.53	1.75
82178 A	LP1	2	0.096	0.098	32%	96	1.08	1.25
82179 A	LP2	1	0.093	0.077	20%	96	0.41	2
82179 A	LP2	2	0.093	0.118	26%	96	1.09	1.5
KCA Sample No.	Description	Target NaCN gpL	Head Average Ag g/t	Calculated Head Ag g/t	Ag Extracted %	Leach Time hours	Consumption NaCN kg/MT	Addition Ca(OH)2 kg/MT
82178 A	LP1	1	44.6	45.04	41%	96	0.53	1.75
82178 A	LP1	2	44.6	43.43	45%	96	1.08	1.25
82179 A	LP2	1	53.11	54.26	54%	96	0.41	2
82179 A	LP2	2	53.11	52.03	60%	96	1.09	1.5

 Table 13.3: Candelaria KCA Bottle Roll Leach Test Work on Leach Pad Composite

 Samples

Based upon KCA's experience with mostly clean non-reactive ores, cyanide consumption in production heaps would be only 25 to 33 percent of the laboratory column test consumptions.

Column leach tests were conducted utilizing HPGR product stage crushed material (p80 4 and 1.7 millimeters). During testing, the material was leached for 120 days with a sodium cyanide solution. Column results show that at the 10-mesh feed size (1.7mm), silver and gold recoveries in 120 days of leaching were 40% and 27% respectively for the LP2 composite. Silver and gold recoveries for LP1 composite, at the same feed size, were 29% and 21% respectively. Column results are summarized in Table 13.4.

KCA Sample No.	Description	Calculated Head Au g/t	Au Extracted %	Days of Leach	Consumption NaCN	Addition Ca(OH)2 kg/MT	Addition Cement kg/MT
82180 A	LP1 p80 4mm	0.106	22%	120	1.31	0	2.09
82181A	LP1 p80 1.7mm	0.098	21%	120	1.61	0	2.11
82182 A	LP2 p80 4mm	0.106	20%	120	1.39	0	1.97
82183 A	LP2 p80 1.7mm	0.106	27%	120	1.77	0	2.02
KCA Sample No.	Description	Head Average Ag g/t	Au Extracted %	Days of Leach	Consumption NaCN	Addition Ca(OH)2 kg/MT	Addition Cement kg/MT
82180 A	LP1 p80 4mm	41.67	25%	120	1.31	0.53	2.09
82181A	LP1 p80 1.7mm	42.92	29%	120	1.61	1.08	2.11
82182 A	LP2 p80 4mm	42.10	34%	120	1.39	0.41	1.97
82183 A	LP2 p80 1.7mm	45.60	40%	120	1.77	1.09	1.5

 Table 13.4: Candelaria Column Leach Test Work on Leach Pad Composite Samples

13.2.2 Mount Diablo Core & Bulk Samples

Six composites from mineralized intervals in diamond drill holes (SO-C-22-132 to 137) completed in September 2022, and three approximately 600kg bulk samples of oxide and mixed material collected at the base of the Mt. Diablo open-pit were sent to KCA in Reno, Nevada for metallurgical testing. All samples targeted the Lower Candelaria Shear ('LCS') mineralized zone. The metallurgical drill hole sampling and handling is described in Section 11 while the drill collar information is in Table 10.3 and location is presented in Figure 13.1).

13.2.2.1 Bulk Samples (KCA) – 2022 to 2023

On August 2022, three bulk surface samples consisting of oxide and mixed (oxide-sulphide) mineralized material collected with a backhoe at the base of the Mt. Diablo open-pit (see Fig. 13.1 and Table 13.5) were sent to KCA for bottle roll tests and column HPGR-heap-leach testing.

The bulk samples were homogenized, quartered and two opposite quarters combined for shipping. Individual samples of 325 kg each were sent to KCA for testing while the rest is stored at the Candelaria mine site. One-kilogram split samples were prepared and pulverized to 0.106 millimeters, leached for 48 hours at a target 5 g/L sodium cyanide level for bottle-roll tests. Head grades were determined at the internal KCA laboratory by fire assay and atomic absorption finish (FA/AA 30 grams). Both bulk and core samples were collected, packed and delivered to KCA by Silver One personnel.

Location	Sample	Wtkg	Easting_utm	Northing_utm
Diablo Pit	N-648	322.97	405593	4222967
Diablo Pit	N-959	326.02	405597	4222973
Diablo Pit	N-960	326.68	405583	4222983

Table 13.5: Summary of Bulk Sample Weights and Locations

Bottle Roll Test Work

The initial bottle-roll test extractions for the oxide and mixed bulk samples collected in the Mt. Diablo open-pit ranged from 27% to 60% silver and 62% to 73% gold (Table 13.6). The lower-than-expected silver extractions on the mixed (oxide-sulphide mineralization) are likely to be mineralogy specific to those samples and may not be representative of the entire pit bottom.

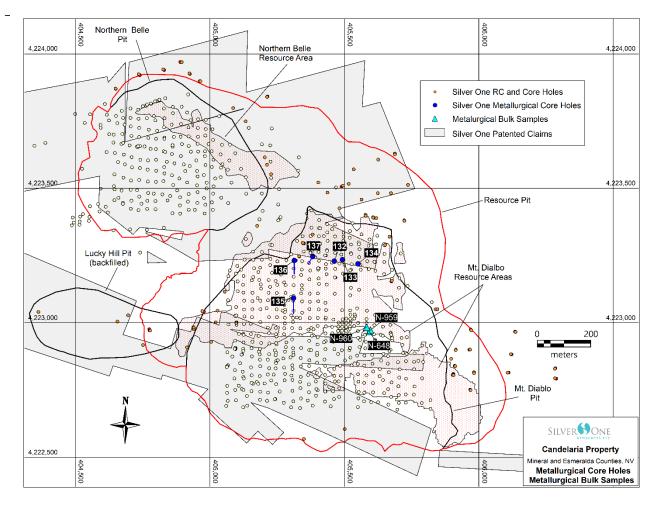


Figure 13.1: Metallurgical Drill Hole and Bulk Sample Locations

BULK SA	AMPLES - E	BULK SAMPLES - BOTTOM OF Mt. DIABLO PIT								
Field	Crush	Head Average	Au Extracted	Notes						
Description	Туре	gms Au/MT	%	rotes						
N648	Pulv.	0.213	62%	Mixed						
N959	Pulv.	0.261	73%	Mixed						
N960	Pulv.	0.457	73%	Oxide						
Field	Crush	Head Average	Ag Extracted	Notes						
Description	Туре	gms Ag/MT	%	Notes						
N648	Pulv.	269.18	27%	Mixed						
N959	Pulv.	92.98	46%	Mixed						
N960	Pulv.	109.92	60%	Oxide						

Table 13.6: Candelaria Project Summary of Bottle Roll Leach Test Work on Bulk Samples

Note: Bulk samples consist of approximately 600 kg each, collected from the floor at three separate locations at the bottom of the Mt. Diablo Pit with a backhoe and then homogenized, quartered and two opposite quarters combined for shipping. Individual samples 300 kg each were sent to KCA for testing while the rest is stored at the Candelaria mine site. 1,000 grams split samples were prepared and pulverized to 0.106 millimeters, leached for 48 hours at a target 5 g/L sodium cyanide level for bottle-roll tests. Head grades were determined at the internal KCA laboratory by fire assay and atomic absorption finish (FA/AA 30 grams). Both bulk and core samples were collected, packed and delivered to KCA by Silver One personnel.

Column Leach Test Work

Material from the three bulk samples were crushed at 3/4" (cone) and 1.7 mm (HPGR) respectively for column cyanide leaching. After 120 days of leaching, the extractions reported for material crushed to 1.7 mm with HPGR are 30% to 40% Ag and 48% to 63% Au in mixed material, and 48% Ag and 76% Au in oxide material. The HPGR silver extractions from material crushed to 1.7mm are 8% higher than those obtained from material crushed to 34" with conventional cone crusher indicating that metal extractions are increased with finer crushing.

13.2.2.2 Core Samples (KCA) 2022 to 2023

On August 2022, six composites from mineralized intervals from six diamond drill holes drilled in the Mount Diablo pit area were sent to KCA for direct leaching (Bottle roll tests) and column HPGR-heap-leach testing. The diamond drill holes are representative of oxide, mixed (oxide and sulphide), and sulphide-rich mineralization within the historic resource area (see Figure 13.1 above for location of drill holes).

Bottle Roll Leach Test Work

Drill hole samples from HQ and NQ core were collected from the entire mineralized intervals of each drill hole using 100% of the core. Samples weighed approximately 100 kg to 180 kg each. 1,000 grams split samples were prepared and pulverized to 0.106 millimeters, leached for 48 hours at a target 5 g/L sodium cyanide level for bottle-roll tests. Head grades were determined at the internal KCA laboratory by fire assay and atomic absorption finish (FA/AA 30 grams). Core samples were collected, packed and delivered to KCA by Silver One personnel.

Bottle roll tests extractions range from 60% to 76% silver, and 68% gold in the oxide diamond drill intercepts; from 70% to 77% silver and 19% to 44% gold in the mixed (oxide-sulphide) diamond drill intercepts; and from 44% to 51% silver and 1% to 3% gold in the sulphide diamond drill intercepts (Table 13.7). The samples were pulverized to a target size of 100% passing 0.106 millimeters and leached for 48 hours.

Candelaria Project Core Diamond Drill Hole Samples										
	Summary of Cyanide Bottle Roll Leach Tests									
GOLD										
	Crush			Head	Au					
Description	Crush	Meters	Sample	Average	Extracted	Notes				
Drill Hole	Туре	Witters	Interval (m)	gms Au/MT	%					
SO-C-22-132	Pulv.	23.45	153.1 -176.55	0.713	<1%	Sulfide				
SO-C-22-133	Pulv.	23.9	163.72-187.62	0.24	<1%	Sulfide				
SO-C-22-134	Pulv.	30.2	127-157.2	0.324	68%	Oxide				
SO-C-22-135	Pulv.	31.18	128.93-160.11	0.286	68%	Oxide				
SO-C-22-136	Pulv.	20.9	110.47-131.37	0.264	44%	Mixed				
SO-C-22-137	Pulv.	23.53	136.77-160.3	0.309	19%	Mixed				

Table 13.7: Candelaria Bottle Roll Leach Tests - Core Hole Samples

			SILVER			
Description Drill Hole	Crush Type	Meters	Sample Interval (m)	Head Average gms Ag/MT	Ag Extracted %	Notes
SO-C-22-132	Pulv.	23.45	153.1 -176.55	359.04	51%	Sulfide
SO-C-22-133	Pulv.	23.9	163.72-187.62	142.71	44%	Sulfide
SO-C-22-134	Pulv.	30.2	127-157.2	149.91	76%	Oxide
SO-C-22-135	Pulv.	31.18	128.93-160.11	138.91	60%	Oxide
SO-C-22-136	Pulv.	20.9	110.47-131.37	97.82	70%	Mixed
SO-C-22-137	Pulv.	23.53	136.77-160.3	144.71	77%	Mixed

Note: Drill hole samples from HQ and NQ core were collected from the entire mineralized intervals of each drill hole using 100% of the core. Samples weighed approximately 100 kg to 180 kg each. 1,000 grams split samples were prepared and pulverized to 0.106 millimeters, leached for 48 hours at a target 5 g/L sodium cyanide level for bottle-roll tests. Head grades were determined at the internal KCA laboratory by fire assay and atomic absorption finish (FA/AA 30 grams). Core samples were collected, packed and delivered to KCA by Silver One personnel.

Column Leach Test Work

Material from the six drill-holes samples were crushed at 1" (cone) and 1.7 mm (HPGR) respectively for column cyanide leaching. The material conventionally crushed was leached for 183 days while material crushed with HPGR was leached for 158 days (Figure 13.2).

Average silver extractions for samples crushed with HPGR are 58%, 61% and 72% for sulphide, oxide, and mixed material, respectively. In comparison to historic recoveries of 51%, the above extractions represent an increase of +14%, +20% and +41% for sulphide, oxide and mixed materials, respectively. Average silver extractions of samples crushed with conventional cone crushing are 47%, 53% and 62% for sulphide, oxide, and mixed material respectively). Leaching of gold works well on oxides but not in mixed material and sulphide. Gold extractions of oxide material crushed

with HPGR average 70%, compared with 73% obtained with conventionally crushed material. Gold extractions from sulphides and mixed material crushed with HPGR, average 4% and 28%, respectively, while extractions from conventionally crushed samples averaged 3% and 34% respectively. According to KCA, the estimated field extractions are typically three to five percentage points below the lab extractions.

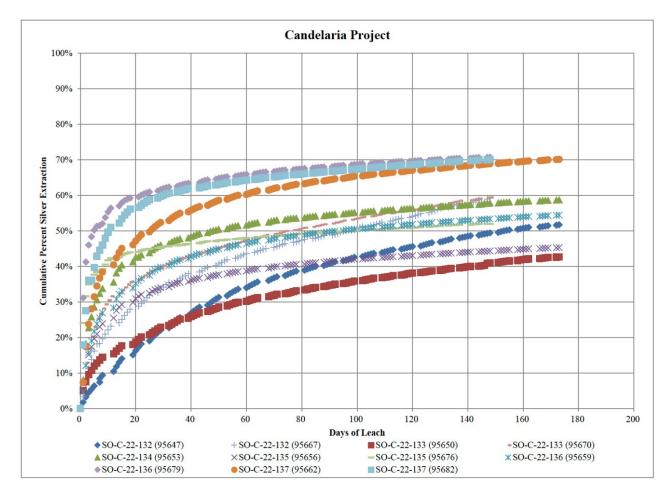


Figure 13.2: Percent silver extraction vs days of leaching for oxide, mixed and sulphide core samples.

Flotation-Cyanidation on Sulphide Samples

Flotation extractions were conducted by KCA on two sulphide samples obtained from drill core of holes SO-C-22-132 and SO-C-22-133. Flotation extractions average 62% silver, 72% gold, 50% lead and 37% zinc. The sulphide results are improved by leaching the flotation tails. Flotation followed by cyanidation of the tails increases the extractions to a range between 71% to 84% silver (average 77.5%) and 75% to 89% gold (average 82%).

13.2.3 Other Technologies - Extrakt/Bechtel

During 2023, Extrakt Process Solutions ("EPS") of Bowling Green, KY conducted agitated noncyanide leach tests on leach pad samples and during 2024, agitated and column non-cyanide leach tests on both leach pad samples, and core samples from diamond drill holes drilled in the Mount Diablo area. The core samples are representative of the in-ground LCS mineralization in the project.

Extrakt metallurgical results are compared to KCA and McClelland results in Table 13.8.

13.2.3.1 Candelaria Leach Pad Samples

Bulk samples representative of leach pad 1 (LP1) and leach pad 2 (LP2) weighing 228 kg and 263 kg respectively, composited from sonic drill holes drilled and analyzed by Silver One in 2017 and 2018, were entirely crushed to $\leq 2 \text{ mm}$ (<2000 microns) with a Vertical Shaft Impact crusher at CEMCO's facilities in Belen, NM, and shipped to the EPS laboratory in Kentucky for metallurgical testing. The material consisted of leached oxide and partially refractory material with silver head grade of 51.3 g/t and 50.1 g/t for LP1 and LP2 respectively.

Representative portions of the bulk samples were weighed and sieved to separate two fractions. Material smaller than 2 mm was used for testing. The tests were conducted on 1 to 2 kg splits of the sieved (<2 mm) material. Splits tested were prepared according to acceptable industry standard practices (homogenized, coned and quartered several times). The minus 2 mm size was selected because of economic reasons, as it is a size fraction that can be achieved with one single stage of HPGR crushing. This is less expensive than milling to a much finer size and yields better silver recoveries than those obtained by historical leaching of the coarser (1 inch = 25.4 mm) material existing in Candelaria's leach pads (see the Company's news release of April 19, 2018 and National Instrument 43-101 ("NI 43-101") technical report filed on SEDAR+ by the Company in 2020 titled "Technical Report on the Heap Leach Pads within the Candelaria Property").

The current optimized agitated-leach silver recoveries using EPS' proprietary solutions average 59.1% for LP1, and 51.1% for LP2 on samples as received at the lab (<2 mm = 2000 microns), which significantly exceed the 20.9% and 27.9% silver recoveries achieved with cyanide leaching from bottle roll tests using material of similar size of LP1 and LP2 respectively (See Table 13.8) and the Company's news release dated May 21, 2019). Phase 1 leaching results of samples tested at different particle sizes, show that the silver recoveries increase with decreasing particle size which warrants additional testing to optimize silver recoveries at finer grind sizes and trade-off analysis to evaluate the economic benefits of finer grinding. EPS' leach times during phase 2 testing were between 6 and 7 hours further reducing the leach times of 48 hours or more used for cyanide leaching.

EPS' column leach tests were done on minus 2 mm material for both LP1 and LP2. The reported silver recoveries were 63% and 69% for LP1 and LP2 respectively, which bode well for the prospects of heap-leaching. These results above highlight the potential to use EPS' technology in heap-leach scenarios (at crush sizes of 2 mm), which may positively impact the economics of the project.

13.2.3.2 Candelaria Core Samples

Three drill-core samples from holes 132, 135 and 136 crushed to 1.7 mm with HPGR by KCA, weighing 9.52 kg, 9.6 kg, and 37.1 kg respectively, were shipped to EPS laboratory in Kentucky for metallurgical testing. The samples consisted of oxide (drill hole 135), sulfide (drill hole 132) and mixed (drill hole 136) mineralization with silver head-grades of 147 g/t, 419 g/t, and 115 g/t, respectively.

Table 13.8: Comparison of Silver Recovery between Extrakt non-cyanide tests and KCA and McClelland Test Results.

		• Metallurgica	al Testing Sil	ver One Sar	nples	
		ery Comparis			-	
			ted % Silver)			
Sample type & size fraction	Extrakt Phase 2 Agitated Non- Cyanide Leach Tests	Extrakt Phase 1 Agitated Non- Cyanide Leach Tests	Extrakt Column Non- Cyanide Tests	KCA Agitated Cyanide Leach (BRT) Tests	KCA Column Cyanide Tests	McClelland Agitated Cyanide Leach (BRT) Tests
Oxide 1.1-1.7mm	68.2 ¹	Louon rooto	NA	(2111)10000	52-70 ⁴	(BIII) 10000
Oxide 500 µm	68				02.70	
Oxide 250 µm	71					
Oxide 106 µm				60-76 ³		
Sulfide 1.1-1.7mm	59.4 ¹		NA		60-60 ⁴	
Sulfide 500 µm	26					
Sulfide 250 µm	38					
Sulfide 106 µm				44-51 ³		
Mixed 1.1-1.7mm	80.4 ¹		66		71-71 ⁴	
Mixed 500 µm	78					
Mixed 250 µm	81					
Mixed 106 µm				70-77 ³		
LP1 1.1-1.7mm	59.1 ¹	49.1	63		29 ⁵	20.9
LP1 500 µm	51	59.9				
LP1 250 µm	56	62.2				
LP1 212 µm						32.5
LP1 150 µm		64.4		41-45 ²		
LP1 75 µm		71.2				42.9
LP2 1.1-1.7mm	51.1 ¹		69.4		40 ⁵	27.9
LP2 500 µm	48					
LP2 250 µm	55					
LP2 212 µm						41.9
LP2 150 µm				54-60 ²		
LP2 75 µm						52.3
 Optimized recovery a The numbers indicat The numbers indicat mixed material) 	e silver extraction a			-		
4 KCA columns HPGR	crush 1.7mm - CN	Leach 158 days				
5 KCA columns HPGR	crush 1.7mm - CN	Leach 120 days				
BRT - Bottle Roll Test						

The samples were prepared in a similar manner as the LP samples above. A split of the <2 mm fraction was tested as is, and 1 to 2 kg splits were further ground to 500 μ m and 250 μ m for agitated leach testing. Column testing was performed on the sulfide sample only due to insufficient oxide and mixed material.

The optimized silver recoveries of agitated leaching tests using EPS' proprietary solutions are 68.2%, 59.4% and 80.4% for the oxide, sulfide and mixed material as received at the lab (<2 mm = 2000 microns) respectively. These recoveries are higher than the silver recoveries reported by KCA with cyanide leaching from bottle roll tests done at smaller particle size material. However, the column cyanide-leach silver average recoveries obtained by KCA of 61%, 58% and 72% in

the same oxide, sulfide and mixed material crushed with HPGR to 1.7 mm (See Table 13.8 and the Company's news release dated June 14, 2023) suggest that cyanide leaching of fresh material may reach similar range of recoveries so far achieved by EPS' proprietary solutions.

14.0 MINERAL RESOURCE ESTIMATES

14.1 Introduction

The Candelaria deposit was originally mined by selective underground methods starting around the late 1800s and early 1900s, and by open-pit methods from 1980 to 1997. The dipping mineralized zones for both the Mount Diablo and Northern Belle deposits continue at depth beyond the margins of the current pit limits. Figure 14.1 shows the relative location of the various resource areas.

This mineral resource estimate has been prepared following the CIM guidelines and is restricted to only the Mount Diablo open pit, the Mount Diablo underground, and the Northern Belle open pit, all areas within the Candelaria property. The leach pads and low-grade stockpiles were reported in a previous NI 43-101 report (McCrea, 2020) by the author and is referenced in the appropriate section. It does not explicitly or implicitly refer to resources contained in any of the other mineralized zones within the Property. Mr. James A. McCrea, P. Geo., carried out the modelling and estimate of the mineral resources, a qualified person with respect to mineral resource estimation under NI 43-101. Mr. McCrea is independent of Silver One by the definitions and criteria set forth in NI 43-101, and there is no affiliation between the author and the company except that of an independent consultant-client relationship.

Since early historical development, silver grades used in the resource and reserve estimates and production records at Candelaria have been based on soluble (leachable) silver grades (AgCN) and gold grades (AuCN) obtained from hot cyanide leach methods, since the previous open-pit operation's focus for processing was on heap leaching the silver.

These subject mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, and legal, title, taxation, socio-economic, political, or other relevant issues. The effective date of this mineral resource estimate is April 30, 2025.

14.2 Factored Silver and Gold

In early 2025, Silver One updated the regression formulas used for calculating Total Ag and Total Au (Factored Ag and Factored Au) in historic holes reporting only CN soluble Ag and Au values. The regression formulas used are:

- Mt. Diablo Oxide/Mixed: Ag T = (AgCN * 1.9244) + 2.07
- Mt. Diablo Sulphide: Ag T = (AgCN * 2.0718) +1.995
- Northern Belle Oxide/Mixed: Factored Ag T = (AgCN * 1.4002) + 1.7975
- Mt. Diablo: Factored Au T = 1.2534 * AuCN
- Northern Belle: Factored Au T = 1.2438 * AuCN + 0.01125

The 2025 Factored Ag and Au regression formulas are based on SSR re-assays of pulps from Nerco Mount Diablo and Northern Belle drill holes (230 samples with both FA Ag and mine AgCN), SSR AgCN results levelled to approximate equivalent mine results (305 samples from Mount Diablo only), several Nerco drill results reporting FA Ag Total (63 samples from four Mt. Diablo drill holes), and eight C-holes with FA Ag at Northern Belle to increase the available samples used for regression calculations. (Cann and Watkins, 2025).

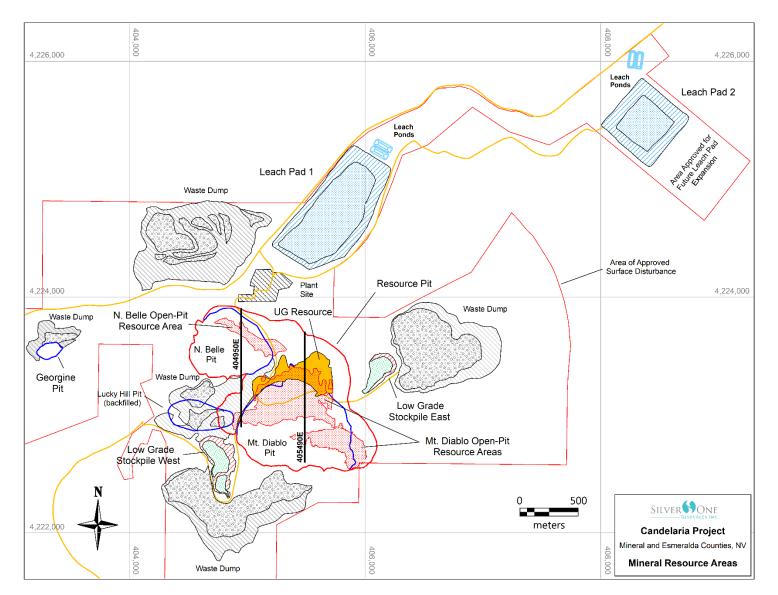


Figure 14.1: Candelaria Resource Areas

14.3 Metal Equivalents

The silver equivalents used in this report use the total silver (Ag T) and total gold (Au T) with recoveries determined from metallurgical testing (Table 14.1) to calculate AgEq T based on a USD\$2106.00 per ounce gold price and USD \$27.50 per ounce silver price. Additionally, a silver equivalent was calculated using soluble silver (AgCN) and soluble gold (AuCN) grades using metallurgical recoveries for silver equivalent (AgEq).

The factored silver and gold grades were used for the AgEq T equivalent because the metallurgical recoveries are based on fresh material and the factoring was used to estimate fire assay grades from the cyanide soluble portion of the database. The AgEq grades are based on the same recoveries as used for AgEq T and are shown in Table 14.1.

ietaliai gieai i				<u>.</u>	.g ana		
Zone	Com	modity	Oxi	de	Mixed	Sulp	bhide
Mount Diablo		Ag	56	%	66%	55	5%
		Au	51%		10%	0	%
Northern Belle		Ag	56	%	66%	55	5%
		Au	51	%	10%	0	%
Zone		Commo	dity		All Type	S	
LP1		Ag			25%		
		Au			20%		
LP2		Ag		35%			
		Au			25%		
Low Crado Stor	kniloo	Ag		35%			
Low-Grade Stoc	kpiles	Au			25%		

Table 14.1: Metallurgical Recoveries Used for Ag and Au Equivalent Calculations

14.4 NSR Calculations

Silver One contracted International Mining Consultants ("IMC") of Tucson, Arizona to conduct pit optimizations, open-pit and underground mine planning as well as to estimate mining capital and operating costs. IMC used KCA's metallurgical recoveries and costs for pit designs and resource reporting as well as Net Smelter Return (NSR) to combine the values of all economic metals. Simply put, NSR, expressed in \$/tonne, is the total sales value net of all off-site costs for smelting and refining. Using the metal prices and costs summarized in Table 14.28, the equations for NSR are as follows based on the metal grade units provided in the model.

Silver NSR = Ag grade x Recovery x (1-Royalty) x (Price – Ag Refine) x 0.03215 + Gold NSR = Au grade x Recovery x (1-Royalty) x (Price – Au Refine) x 0.03215 Total NSR = Silver NSR + Gold NSR

Silver recoveries used for the NSR varied from 55 to 66%, and gold recoveries from 0 to 51% depending on the mineralization type of each block. The average grades of earlier mine plans indicated that silver makes up approximately 84% of the value, and gold makes up the remaining value of around 16%. The internal cutoff for NSR is \$9.273/tonne, the total of the processing and G&A unit costs.

The base case NSR was calculated for every block in the model. Then, to establish pit design guidance for smaller pits, the NSR was reduced by factoring downward on a percentage basis (revenue factors). Rather than reporting revenue factors for each cone, the resulting gold price from each factor is reported on the summary tables since silver is the most valuable metal for Candelaria.

The pit optimizations were calculated at \$0.50/oz incremental silver prices (gold prices were scaled at the same ratio of price increments) between \$20/oz and \$32/oz. Each of the incremental optimized pits were tabulated at a metal price (\$27.50/oz silver price) to establish the incremental tonnage, grades and potential income (net of processing and G&A costs) within each of the optimized pits.

The resulting graphics are presented in terms of metal prices, but the reader should keep in mind that the value of all metals is included in the development of the computer-generated pit geometries.

14.5 Drilling and Assay Database

The drill hole data for Mount Diablo was provided by Silver One in the form of Microsoft Excel spreadsheets containing location, survey, and analytical data for 680 historic and recent drill holes. Data included 98 diamond and RC drill holes from three recent drill programs from 2019 to 2022, with holes collared around the Mount Diablo and the Northern Belle open pits. The database contains some 54,124 samples analyzed for soluble gold and silver. Recent drilling data (since 1999) contained samples also analyzed for total silver by ICP or gravimetric methods and gold by fire assay and a multi-element ICP. The drilling and assay data provided by Silver One appears to be adequate for the purposes of this mineral resource estimate and the author has no reason to believe that any of the information is inaccurate.

The Northern Belle drill data was imported and validated at the same time as Mount Diablo. The database received from SSR mining contained data for 234 drill holes that were analyzed for cyanide soluble silver and gold that were drilled by previous operators on Northern Belle. Silver One drilled 17 drill holes that were analyzed by fire assay for gold and an ICP with silver over limits by gravimetric methods plus cyanide soluble assays for gold and silver, and a multi-element ICP for a total of 251 holes. The database contains 22,672 assays for Northern Belle where 21,338 assays where only cyanide soluble and 1334 assay fire assays and a multi-element ICP.

When there were several analytical procedures performed on individual samples, often as a result of the measured silver and/or gold grades exceeding the limits of precision for a particular analytical technique, the assay result from the most accurate procedure was considered the 'final' value (i.e., Fire Assay/Gravimetric superseded Fire Assay/Atomic Absorption which superseded ICP values). All 'below detection limit' analytical values were assigned one-half the lower detection limit value for the purposes of this resource estimate. All data are expressed in SI units and grid coordinates are in the UTM NAD83 Zone 11 North Datum.

14.6 Sample Compositing

Mount Diablo 3-metre bench composites were calculated from soluble gold and silver values and the total gold and total silver values based on the benches from the model that ranged from 1,471 to 1,960 metres in elevation at the toe. The composites, including the SSR drilling, and the composites from the Silver One drill programs were added for 17,538 soluble silver and gold composites in the database. The database also contained assay values for total silver (Ag T), and total gold (Au T). These composites from Mount Diablo were used to interpolate the resource model.

At Northern Belle, equal length 3 metre down hole composites were calculated from capped assay soluble gold, total gold, and total silver values. These 3 metre composites were generated starting from the collar of the drill hole to the toe. Sample compositing produced 14,872 3-metre composites in total which were used to interpolate the resource model.

Any intervals not assayed were assigned a 'Not Sampled' ('NS') designation which excluded it from any composite calculation, and any composites less than half the composite length were discarded so as to not introduce a short sample bias in the interpolation process. Composite statistics as listed in the Table 14.2 for Mount Diablo and in Table 14.3 for Northern Belle. In the tables below, Domains 1 and 10 correspond the LCS which is the principal mineralized unit. Domains 2 and 20 are mineralized material above the LCS while Domains 3 and 30 are all other mined material.

The QP has reviewed the composite statistics and believes the data set is sufficient for resource estimation at Candelaria.

	Domain	10	Doma	in 20	Domain 30	
	Ag Sol	Au Sol	Ag Sol	Au Sol	Ag Sol	Au Sol
Maximum	1454.503	2.372	222.84	2.331	170.743	1.523
Minimum	0.007	0.005	0.008	0.005	0.005	0.003
No. of Samples	4,159	3,665	3,792	3,428	8,674	4,938
Mean	66.744	0.172	8.792	0.126	2.436	0.043
Median	36.464	0.102	3.281	0.069	0.860	0.034
Standard Deviation	108.076	0.222	18.159	0.186	7.068	0.062
Variance	11,677.603	0.049	468.43	0.035	48.951	0.004
Coefficient of Variation	1.57	1.291	329.739	1.479	2.901	1.439
97.5 th Percentile	339.959	0.753	57.152	0.594	12.839	0.248

 Table 14.2: Mount Diablo Composite Summary Statistics by Domain

bie 14.5. Northern Bene Composite Cuminaly Statistics by Domain									
	Doma	in 1	Domain 2		Domain 3				
	Ag Sol	Au Sol	Ag Sol	Au Sol	Ag Sol	Au Sol			
Maximum	982.035	4.091	262.501	0.72	158.40	2.392			
Minimum	0.055	0.005	0.062	0.005	0.005	0.005			
No. of Samples	4,367	3,979	2,073	1,681	5,543	2,416			
Mean	49.353	0.195	8.762	0.111	2.906	0.043			
Median	20.57	0.114	4.579	0.073	0.991	0.034			
Standard Deviation	90.389	0.239	14.350	0.113	6.785	0.078			
Variance	8,985.88	0.057	205.914	0.013	46.035	0.006			
Coefficient of Variation	1.849	1.291	329.739	1.479	2.901	1.439			
97.5 th Percentile	277.312	0.861	45.522	0.480	17.153	0.195			

14.7 Three-Dimensional Solid Modelling

Geologic solid models were constructed by Silver One using 30 m-spaced, north-south sections. Three grade/structural domains and three geologic domains were defined based on geology and structure, including the Lower Candelaria shear (LCS – Domains 10 and 1), secondary structures in the hanging wall (Domains 20 and 2), two geologic domains, waste dumps, and a background domain (Domains 30 and 3). For the interpolation of the LCS, Domain 10 was divided into 13 sub domains separated along east west fault lines to restrict the interpolation to data coded for that faulted block. The grade and geologic domain solids were used to code the rock type model, percent model, and the LCS domain model, which controls the grade assignment during the interpolation process. Solid models are shown in Figure 14.2.

14.8 Specific Gravity Estimation

Historically, the bulk density used for the mine during the entire duration of the open-pit mining operation was 13.5-cubic-feet-per-ton for oxide material (Stevens, 2001), which converts to 2.37 tonnes/m³. Silver One undertook a program of sampling for specific gravity ("SG") determinations in 2022 and 78 core samples were submitted for SG determination. This specific gravity model is based on the oxide state of the sampled tested. The SG samples were plotted on sections then oxide, mixed and sulphide domains created to code the density model. The final in-situ densities used are listed in Table 14.4.

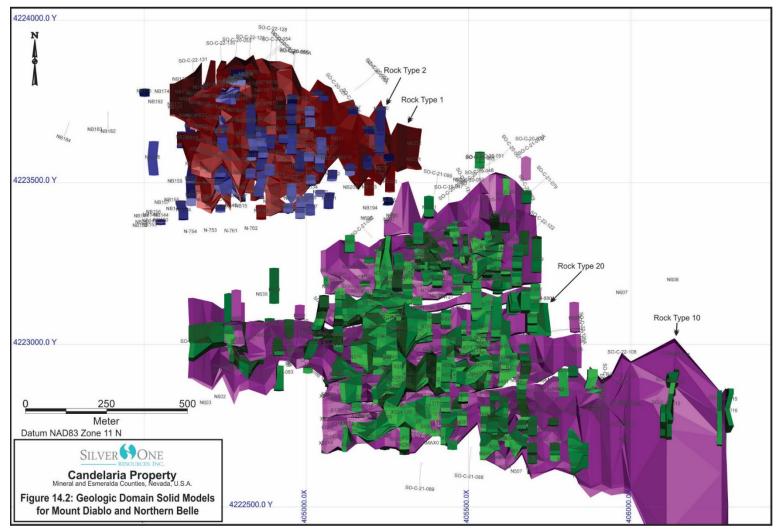


Figure 14.2: Geologic Domain Solid Models for Mount Diablo and Northern Belle

SG				
2.52				
2.52				
2.66				
2.37				
1.66				

Table 14.4: Candelaria Bulk Density Values.

The bulk density used for the leach pad mineral resource estimate was the same as historically used at the mine during the entire duration of the open-pit mining operation. The tonnage conversion factor was 13.5-cubic-feet-per-ton for oxide material (Stevens, 2001) or 2.37 t/m³ plus a swell factor for the density of leach pad material.

The densities used for LP1 and LP2 were validated with the solid models against reported mine production. The final in-situ densities used are 1.88 for LP1 and 1.76 for LP2.

14.9 Grade Capping

The methodology used was to cap the assays before compositing. Grade capping the composites controls high-grade outliers in the composite data so as to limit their effect on the grade model. Cumulative probability plots of Domain assays were used to identify high-grade outliers for soluble silver, soluble gold, total silver, and total gold composites contained within the Domain solid models. The top-cuts for Mount Diablo are listed in Table 14.5 and for Northern Belle in Table 14.6.

rx10	Ag Sol	Au Sol	Ag T	Au T
97.5 percentile	369.81	0.9	744.998	1.179
Prob pick	1494.86	2.811	3432.998	3.523
Percentile	99.8	99.8	99.8	99.8
99.0 percentile	663.43	1.406	1381.039	1.85
rx20	Ag Sol	Au Sol	Ag T	Au T
97.5 percentile	63.46	0.686	122.153	0.837
Prob pick	274.29	2.331	533.864	2.922
Percent	99.8	99.7	99.8	99.7
99.0 percentile	122.74	1.097	234.978	1.375
rx30	Ag Sol	Au Sol	Ag T	Au T
97.5 percentile	14.743	0.24	30.441	0.301
Prob pick	170.743	0.857	308.571	1.074
Percent	99.9	99.8	99.9	99.8
99.0 percentile	28.8	0.411	58.813	0.515

Table 14.5: Mount Diablo Top-Cuts Used by Domain

inem Bene Top-Outs Osed by Domain									
rx1	Ag Sol	Au Sol	Ag T	Au T					
97.5 percentile	297.26	0.96	934.34	1.23					
Prob pick	966.86	2.331	2994.17	2.911					
Percentile	99.6	99.8	99.6	99.8					
99.0 percentile	538.29	1.303	1751.89	1.632					
rx2	Ag Sol	Au Sol	Ag T	Au T					
97.5 percentile	49.37	0.549	152.89	0.694					
Prob pick	108.69	0.72	273.94	0.907					
Percent	99.5	98.6	99.4	98.6					
99.0 percentile	77.83	0.96	241.02	1.205					
rx3	Ag Sol	Au Sol	Ag T	Au T					
97.5 percentile	19.89	0.274	60.511	0.33					
Prob pick	158.4	0.994	295.156	1.035					
Percent	99.9	99.6	99.8	99.5					
99.0 percentile	34.29	0.514	107.242	0.694					

Table 14.6: Northern Belle Top-Cuts Used by Domain

14.10 Block Model Description

An un-rotated, three-dimensional block model was created in GEMS to completely cover the Mount Diablo (MD) and Northern Belle (NB) zones. The Block Model parameters are presented in Table 14.7.

Table 14.7: Block Model Parameters for Candelaria

Axis Direction	Actual Orientation	Axis Axis Nomenclature		Origin Coordinate	Block Size (m)	No. of Blocks					
Direction	Unentation	AXI2	Nomenciature	Coordinate	SIZE (III)	DIUCKS					
Easting	090°	Х	Column	404325	7.5	263					
Northing	000°	Y	Row	4222525	7.5	226					
Elevation	Vertical	Z	Level	1963	3.0	164					

Separate block models were created for rock type, density, soluble silver, soluble gold, total silver, total gold, and classification. In addition, several special models were created including Distance (to the Closest Sample), Number of Samples (used in block classification), and models for verification.

Two models were created for Candelaria, a percent or 'partial model' and a 'whole block model'. The partial model is created in multiple folders each with a percent model and this allows for a more accurate estimation of volume and tonnes in the model. Folders are used for each grade domain plus a Standard folder for background and waste rock types.

The 'whole block' model used for Candelaria was created to accurately represent the volume and subsequent tonnage that was occupied by each block inside the constraining domain solid. The block model was coded for air (i.e., above topography), background (i.e., outside the solid models) and the domain by coding blocks with a greater than fifty percent (50%) threshold. Blocks with more than 50% of the block inside the solid were given the code of that domain solid.

14.11 Mount Diablo Resource Estimation

14.11.1 Semi-Variogram Analysis

The variography was completed using Isaaks & Company Sage (2001) software with the 3-metre bench composites. The variograms were completed by domain and run for soluble silver and gold, and total silver and gold.

Conventional correlogram variography was used to model the grade continuity. Nugget effects were estimated from down-hole semi-variograms. The major, semi-major and minor axes for grade continuity were determined using oriented semi-variogram fans. The variograms were used to model search ellipses that were then defined for resource estimation utilizing the GEMS Z-Y-Z rotation convention.

Search ellipses were produced for each grade-element after multiple experimental semivariograms had been generated at 30-degree intervals for strike and 15-degree intervals for dip. Modelling of both the silver and gold continuity produced moderate to good quality experimental semi-variograms. The results of the semi-variogram analyses are shown in Table 14.8.

14.11.2 Interpolation

Ordinary kriging was used to interpolate the soluble silver (AgCN), soluble gold (AuCN), and total silver (Ag T) grades in the block model for rock types 10 and 20 using the searches listed in Table 14.8. Rock type 30 used ordinary kriging for soluble silver and total silver while inverse distance cubed was used for soluble gold. The domain boundaries were honored by the kriging process whereby samples from within a domain were used to interpolate only the blocks within that domain.

Initial visual inspections of sample grades versus the block grades for rock type 30 found, possibly because of wider spaced data, that the interpolation was over estimating grade for soluble gold. To make the lower grade areas of rock type 30 more conservative, a high-grade search restriction, to one block, was used with long searches restricted to 80% of the correlogram range. The search distances used for interpolating rock type 30 are also listed in Table 14.8.

14.11.3 Interpolation Validation

The validation of the Mount Diablo block model included visual inspections of the block grades versus composite values and geologic model, block model swash plots for soluble silver, and a 'one out' cross-validation.

The 'one out' cross-validation routine is used for validating kriged models. It is a discretionary sub-routine within the GEMS interpolation profile that involves the removal of a single point from the data set and the estimation of a temporary block at that point using the remaining data. Values are then estimated for all the data points in the data set. The original values and the estimated values for all the data points in the data set can then be statistically analysed and graphed. The scatter plots, without zeros, are used to examine the relationship of the original values to the estimated values by plotting the original values vs. estimated values, the difference vs. the estimated values. To check if the interpolation is under or overestimating, the percent difference of the means of the original and estimated values is calculated.

The results of the 'one out' cross-validation are used to calculate the difference between the mean of the estimated input grades the from interpolation and the mean of the actual input grades from

Table 14.8: Variogram an						
Parameter	Direction x	Direction y	Direction z	Search x	Search y	Search z
Variogram Parameters for rx10 Ag Se	ol					
ZYZ Rotations	-55	66	-27			
Orientation (dip→azm)	-54°→195°	-24°→66°	25°→145°			
Sill		0.05				
Range (m)	22.1	38.1	15	45.0	114.3	66.3
Variogram Parameters for rx10 AgT						
ZYZ Rotations	76	38	16			
	-37°→354°	10°→271°	52°→14°			
Sill		0.25	-			
Range (m)	24.8	30.4	15.8	130.2	105.0	43.2
Variogram Parameters for rx10 Au Se		00.1	10.0			
ZYZ Rotations	69	30	-26			
Orientation (dip→azm)		-13°→314°	60°→21°			
Sill	-21	0.15	00 ->21			
Range (m)	44.8	48.3	14.6	134.4	144.9	43.8
	44.0	40.5	14.0	134.4	144.5	45.0
Variogram Parameters for rx10 AuT	07	22	47			
ZYZ Rotations	67	32	-47			
Orientation (dip→azm)	-21°→75°	-23°→336°	58°→23°			
Sill	0.15				105.0	
Range (m)	39.4	45.2	14.8	118.2	135.6	44.4
Variogram Parameters for rx20 Ag Se						
ZYZ Rotations	22	-22	43			
Orientation (dip→azm)	-16°→24°	-15°→298°	68°→248°			
Sill		0.15				
Range (m)	82.1	50.4	12.7	164.2	100.8	25.4
Variogram Parameters for rx20 AgT						
ZYZ Rotations	16	-13	28			
Orientation (dip→azm)	12°→45°	-6°→316°	77°→254°			
Sill		0.25				
Range (m)	76.8	49.3	15.2	1472	92.6	29.0
Variogram Parameters for rx20 Au Se	bl					
ZYZ Rotations	19	-83	0			
Orientation (dip \rightarrow azm)	83°→73°	0°→341°	7°→251°			
Sill	00 10	0.10				
Range (m)	40.9	13.2	24.4	81.0	26.4	48.8
Variogram Parameters for rx20 AuT	40.5	10.2	27.7	01.0	20.4	40.0
ZYZ Rotations	32	20	-56			
Orientation (dip→azm)	-11°→115°	-17°→22°	-30 70°→58°			
		-17 →ZZ	70 →36			
Sill	0.15	07.0	05.0	00.0	124.0	50.4
Range (m)	46.4	67.0	25.2	92.8	134.0	50.4
Variogram Parameters for rx30 Ag Se		40				
ZYZ Rotations	35	-13	-92			
Orientation (dip→azm)	-0°→147°	13°→57°	77°→235°			
Sill		0.02				
Range (m)	21.3	68.1	203.3	50.8	15.3	46.0
Variogram Parameters for rx30 AgT						
ZYZ Rotations	25	-32	-8			
Orientation (dip→azm)	32°→74°	4°→342°	58°→245°			
Sill		0.25				
Range (m)	44.2	28.3	33.7	62.4	24.3	20.8
Variogram Parameters for rx30 Au Se	bl					
ZYZ Rotations	5	-84	32			
Orientation (dip→azm)	4°→57°	-32°→351°	6°→265°			
Sill		0.30				
Range (m)	36.6	86.5	21.1	36.6	86.5	21.1
Variogram Parameters for rx30 AuT	00.0	00.0		00.0	00.0	
ZYZ Rotations	2	-74	34			
Orientation (dip \rightarrow azm)	∠ 12°→59°	-74 -23°→334°	54 64°→304°			
	12 ->09		04 →304			
Sill Banga (m)	27.0	0.30	22.0	27 75	68 60	17 /
Range (m)	37.0	91.5	23.2	27.75	68.62	17.4

Table 14.8: Variogram and Search Parameters for Mount Diablo Domains

the composite dataset as a percentage of the mean of the actual composite grades. The difference between the mean of estimated input grades and the actual mean of the composite grades for the rock type 10 interpolation pass for soluble silver was -6.51%. The negative value indicates the interpolation is slightly overestimating the block grades versus the sample grades for that domain. Table 14.9 contains a summary of the 'one out' cross validation results by domain.

The 'one out' cross-validation was used to 'fine tune' the number of samples used for interpolation. The cross-validation graphs were produced for a range of interpolation profiles for silver with a different maximum number of samples used in the interpolation. The graphs were used to check on the effects of more data or averaging during the interpolation run. The final interpolation profiles were revised to have the highest number of samples that produced the best cross-validation results.

 Table 14.9: Summary of Mt. Diablo 'One Out' Cross Validation Results for Soluble

 Silver

Domain	Unit	Estimated Grade Mean	Actual Grade Mean	Difference (%)
10	g/t	66.65	62.31	-6.51%
20	g/t	8.80	8.90	1.08%
30	g/t	2.30	2.36	2.60%

Graphs of the trends of mineralization through the deposit were produced for soluble silver. The graphs slice the deposit into 30-metre slices and plot the average block grades, number of samples, average sample grades and tonnage for the slices. The graphs plot the trends of the mineralization and graphically represent the deposit so that the trends can be checked for irregularities or anomalies. The graphs for silver are shown below in Figures 14.3 to 14.5. The validation graphs do not show any irregularities.

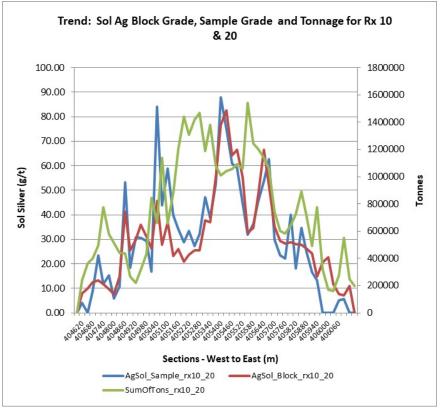


Figure 14.3: Mount Diablo Swath Plot with Ag Soluble Block Grade, Ag Soluble Sample Grade and Tonnage

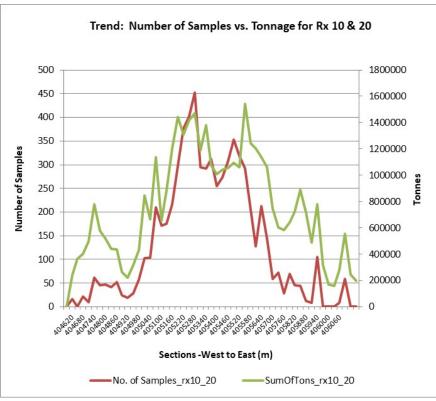


Figure 14.4: Mount Diablo Swath Plot with Number of Samples vs. Tonnage

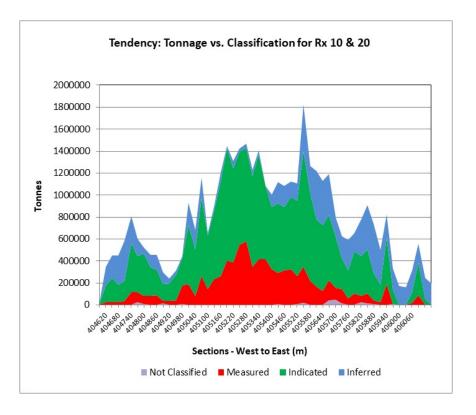


Figure 14.5: Mount Diablo Swath Plot with Tonnage vs. Classification

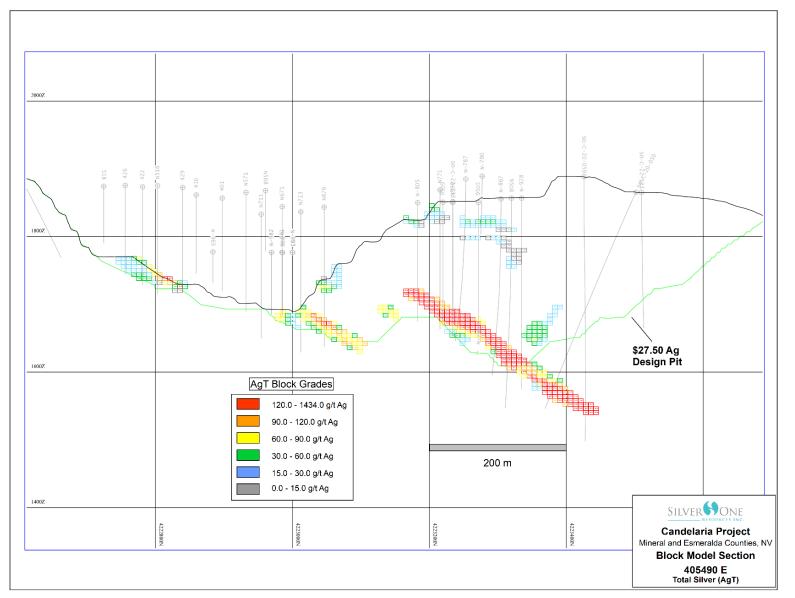


Figure 14.6: Mount Diablo Block Model Section 405490E with Total Silver Grades (see section location Figure 14.1)

14.11.4 Mineral Resource Classification

Mount Diablo resources were classified based on the block distance to the closest composite value and the number of composite values used in the estimation of the block. The distance model was written with the soluble silver interpolation and ranges are shown in Table 14.10.

The has author has reviewed the criteria and believes that it is reasonable and that it meets the definitions of measured, indicated, and inferred mineral resources as stated by National Instrument 43-101 and as defined by the CIM guidelines for the reporting Mineral Resources and Mineral Reserves.

Distance of nearest Composites for Blocks	Number of Composites per Block	CLASSIFICATION
0-5.81 m	>5	Measured
5.81 – 9.62 m	>10	Measured
5.81 – 9.62 m	<10	Indicated
9.62 - 27.1 m	5-25	Indicated
> 27.1 m	ALL	Inferred

 Table 14.10: Classification Criteria for Mount Diablo Resources

14.11.5 Mt. Diablo Underground

Underground resources were estimated using the rx10 solid model (LCS) below the \$27.50 Ag preliminary design pit, within a block continuity solid, and using a 90 g/t Ag T cut-off with a 70% mining recovery for room and pilar extraction.

14.11.6 Mount Diablo Mineral Resource Statement

The classified Mount Diablo resources are listed in Tables 14.11 and 14.12. The resource uses a US \$9.273 NSR cut-off inside the \$27.50 Ag preliminary design pit and a 90 g/t Ag T cut-off for underground with a 70% mining recovery.

	Table 14.11. Classified Resources in \$27.30 Ag Design Fit for Mount Diablo								
Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t		
Measured	5,470	50	0.15	54	101	0.19	106		
Indicated	13,250	47	0.15	52	95	0.18	100		
M&I	18,7230	48	0.15	52	96	0.19	102		
Inferred	2,780	31	0.11	34	67	0.17	72		

Table 14.11: Classified Resources in \$27.50 Ag Design Pit for Mount Diablo

 Table 14.12: Classified Resources in Underground Continuity Shape for Mount

 Diablo

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t
Measured	220	76	0.13	77	175	0.28	177
Indicated	980	70	0.11	71	166	0.26	167
M&I	1,200	71	0.11	72	8	0.27	169
Inferred	650	56	0.07	57	150	0.24	150

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit.

Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation.

A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

3. The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014. 4. Silver Equivalent calculated using AgEQ formula = Ag + (Au * met recovery *67.73/0.8841) (US\$2106.00 per ounce gold price and USD \$27.50 per ounce silver price), Met recoveries in Table 14.1.

5. Total values may not sum correctly due to rounding.

Resources from all zones are summarized in Section 14.15

14.12 Northern Belle

14.12.1 Semi-Variogram Analysis

The variography was completed using Isaaks & Company Sage (2001) software with the 3-metre bench composites. The variograms were completed by domain and run for soluble silver and gold, and total silver and gold.

Conventional correlogram variography was used to model the grade continuity. Nugget effects were estimated from down-hole semi-variograms. The major, semi-major and minor axes for grade continuity were determined using oriented semi-variogram fans. The variograms were used to model search ellipses that were then defined for resource estimation utilizing the GEMS Z-Y-Z rotation convention.

Search ellipses were produced for each grade-element after multiple experimental semivariograms had been generated at 30-degree intervals for strike and 15-degree intervals for dip. Modelling of both the silver and gold continuity produced moderate to good quality experimental semi-variograms. The results of the semi-variogram analyses are shown in Table 14.13.

14.12.2 Block Model

The Northern Belle (NB) block model is as described in Section 14.10 with the block model parameters shown in Table 14.7.

14.12.3 Interpolation

Ordinary kriging was used to interpolate the soluble silver (AgCN), soluble gold (AuCN), total silver (Ag T), and total gold (Au T) grades in the block model for rock types 1 and 2 using the searches listed in Table 14.13. Rock type 3 used ordinary kriging for soluble silver and total silver while inverse distance cubed was used for soluble gold and total gold. The domain boundaries were honored by the kriging process whereby samples from within a domain were used to interpolate only the blocks within that domain.

Initial visual inspections of sample grades versus the block grades for rock type 30 found, possibly because of wider spaced data, that the interpolation was over estimating grade for soluble gold and total gold. To make the lower grade areas of rock type 3 more conservative, a high-grade search restriction, to one block, was used with long searches restricted to 80% of the correlogram range. The search distances used for interpolating rock type 30 are also listed in Table 14.13.

le 14.13: Variogra Parameter	Direction x		Direction z			Search z
Variogram Parameters			Direction 2	Search	Search y	Search
ZYZ Rotations	20	36	16			
Orientation (dip \rightarrow azm)	-	9°→327°	54°→70°			
Sill	-00	0.15	54			
Range (m)	53.3	42.6	11.5	106.6	85.2	23.0
Variogram Parameters		42.0	11.5	100.0	00.2	20.0
ZYZ Rotations	20	35	3			
Orientation (dip \rightarrow azm)	-		5 55°→70°			
Sill	-33 ->07	2 <i>→</i> 330 0.10	JJ →70			
Range (m)	48.6	40.9	11.2	97.8	81.8	22.4
Variogram Parameters			11.2	57.0	01.0	22.4
ZYZ Rotations	43	-91	19			
Orientation (dip \rightarrow azm)	-	-19°→317°	-1°→227°			
Sill	71		-1 -221			
Range (m)	28.0	0.35 87.0	12.6	56.0	174.0	39.2
Variogram Parameters		07.0	12.0	50.0	174.0	55.2
ZYZ Rotations		40	12			
Orientation (dip \rightarrow azm)	28 -39°→47°	40 8°→323°	1∠ 50°→62°			
Sill	-39 →47		50 →62			
-	00.4	0.15 47.0	12.0	180.8	94.0	26.0
Range (m)	90.4		13.0	100.0	94.0	20.0
Variogram Parameters	-					
ZYZ Rotations	-81	15	57			
Orientation (dip→azm)	-8°→113°	13°→25°	75°→171°			
Sill	1010	0.10	40.0	200.0	101.0	05.0
Range (m)	194.0	50.5	12.8	388.0	101.0	25.6
Variogram Parameters	-	-	10			
ZYZ Rotations	-33	7	16			
Orientation (dip→azm)	-7°→107°	2°→17°	83°→123°			
Sill	404.0	0.15	10.0	000.0	50.4	00.0
Range (m)	161.6	25.2	16.0	323.2	50.4	32.0
Variogram Parameters						
ZYZ Rotations	92	89	88			
Orientation (dip→azm)	-2°→268°	88°→256°	1°→358°			
Sill		0.20		- / -		
Range (m)	13.7	21.0	9.3	54.8	84.0	37.2
Variogram Parameters			_			
ZYZ Rotations	16	88	1			
Orientation (dip→azm)	-88°→57°	1°→344°	2°→74°			
Sill		0.30				
Range (m)	25.1	10	12.9	100.4	40.0	51.6
Variogram Parameters	for rx3 Ag S	ol				
ZYZ Rotations	-53	39	-2			
Orientation (dip→azm)	-39°→146°	-1°→55°	51°→143°			
Sill		0.10		1		
Range (m)	16.8	12.1	17.5	27.6	98.9	35.8
Variogram Parameters	for rx3 AgT					
ZYZ Rotations	67	88	-3			
Orientation (dip→azm)	-87°→72°	-3°→293°	2°→23°			
Sill		0.25				
Range (m)	22.6	49.2	11.7	22.6	49.2	11.7
Variogram Parameters	for rx3 Au Se	ol				
ZYZ Rotations	-73	-23	50			
Orientation (dip→azm)	14°→111°	-17°→25°	67°→343°			
Sill		0.10				
Range (m)	152.7	45.4	13.6	152.7	45.4	13.6
Variogram Parameters	for rx3 AuT					
ZYZ Rotations	-76	-26	50			
	-	-20°→29°	64→346°			
Orientation (dip→azm)	16→113°	-20 -23	0			
Orientation (dip→azm) Sill	10-113	-20 →23 0.15	0/0-0			

Table 14.13: Variogram and Search Parameters for Northern Belle Domains

14.12.1 Interpolation Validation

The validation of the Northern Belle block model included visual inspections of the block grades versus composite values, block model swash plots for soluble silver, and a 'one out' cross-validation.

The 'one out' cross-validation routine is used for validating kriged models. It is a discretionary sub-routine within the GEMS interpolation profile that involves the removal of a single point from the data set and the estimation of a temporary block at that point using the remaining data. Values are then estimated for all the data points in the data set. The original values and the estimated values for all the data points in the data set can then be statistically analysed and graphed. The scatter plots, without zeros, are used to examine the relationship of the original values to the estimated values by plotting the original values vs. estimated values, the difference vs. the estimated values. To check if the interpolation is under or overestimating, the percent difference of the means of the original and estimated values is calculated.

The results of the 'one out' cross-validation are used to calculate the difference between the mean of the estimated input grades the from interpolation and the mean of the actual input grades from the composite dataset as a percentage of the mean of the actual composite grades. The difference between the mean of estimated input grades and the actual mean of the composite grades for the rock type 1 interpolation pass for soluble silver was -0.82%. The negative value indicates the interpolation is slightly overestimating the block grades versus the sample grades for that domain. Table 14.14 contains a summary of the 'one out' cross validation results by domain.

The 'one out' cross-validation was used to 'fine tune' the number of samples used for interpolation. The cross-validation graphs were produced for a range of interpolation profiles for silver with a different maximum number of samples used in the interpolation. The graphs were used to check on the effects of more data or averaging during the interpolation run. The final interpolation profiles were revised to have the highest number of samples that produced the best cross-validation results.

Domain	Unit	Estimated Grade Mean	Actual Grade Mean	Difference (%)	
1	g/t	66.65	62.31	-0.82%	
2	g/t	8.80	8.90	-0.27%	
3	g/t	2.30	2.36	-0.38%	

Table 14.14: Summary of NB 'One Out' Cross Validation Results for Soluble Silver

Graphs of the trends of mineralization through the deposit were produced for soluble silver. The graphs slice the deposit into 30-metre slices and plot the average block grades, number of samples, average sample grades and tonnage for the slices. The graphs plot the trends of the mineralization and graphically represent the deposit so that the trends can be checked for irregularities or anomalies. The graphs for silver are shown below in Figures 14.7 to 14.9. The validation graphs do not show any irregularities.

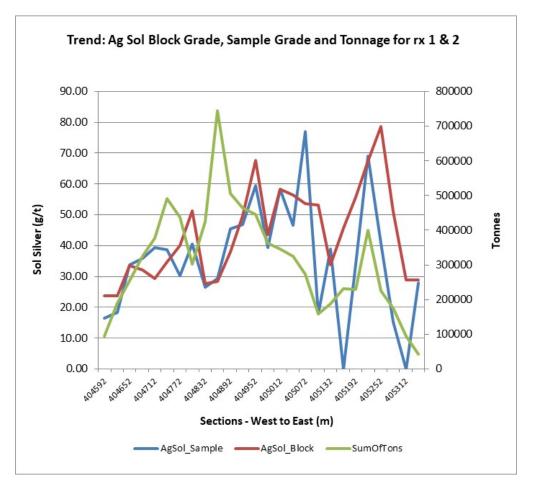


Figure 14.7: Northern Belle Swath Plot with Ag Soluble Block Grade, Ag Soluble Sample Grade and Tonnage

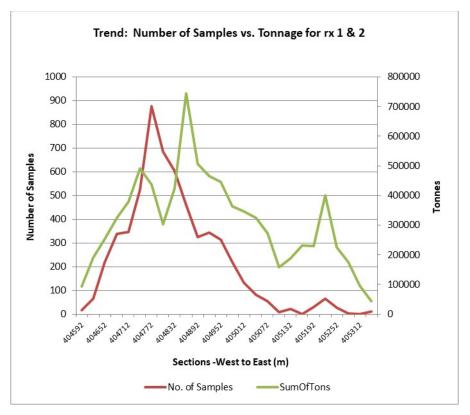


Figure 14.8: Northern Belle Swath Plot with Number of Samples vs. Tonnage

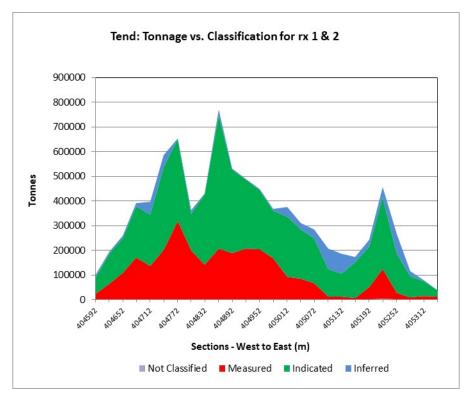


Figure 14.9: Northern Belle Swath Plot with Tonnage vs. Classification

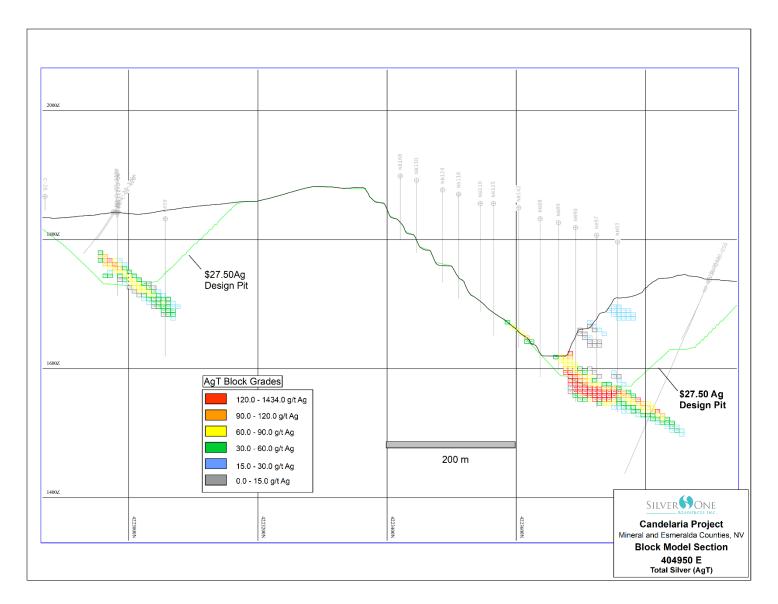


Figure 14.10: Northern Belle Block Model Section 404950E with Total Silver Grades, Section Line on Figure 14.1

Technical Report on the Candelaria Property, Mineral and Esmeralda Counties, Nevada April 30, 2025

14.12.2 Mineral Resource Classification

Northern Belle resources were classified based on the block distance to the closest composite value and the number of composite values used in the estimation of the block. The distance model was written with the soluble silver interpolation and ranges are shown in Table 14.15.

The has author has reviewed the criteria and believes that it is reasonable and that it meets the definitions of measured, indicated, and inferred mineral resources as stated by National Instrument 43-101 and as defined by the CIM guidelines for the reporting Mineral Resources and Mineral Reserves.

Distance of nearest Composites for Blocks	Number of Composites per Block	CLASSIFICATION	
0-6.26 m	>5	Measured	
6.26 – 12.65 m	>10	Measured	
6.26 – 12.65 m	<10	Indicated	
12.65 -37.18 m	5-25	Indicated	
> 37.18 m	ALL	Inferred	

 Table 14.15: Classification Criteria for Mount Diablo Resources

14.12.3 Mineral Resource Statement

The classified Northern Belle resources are listed in Table 14.16. The resource uses a US \$9.273 NSR cut-off inside the \$27.50 Ag preliminary design pit.

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t		
Measured	1,250	50	0.24	59	79	0.30	89		
Indicated	2,100	50	0.18	56	82.	0.25	89		
M&I	3,350	50	0.20	57	81	0.27	89		
Inferred	180	44.	0.17	47	90	0.27	93		

Table 14.16: Classified Resources in \$27.50 Ag Design Pit for Northern Belle

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of

Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit.

Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation.

A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

3. The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014.

4. Silver Equivalent calculated using AgEQ formula = Ag + (Au * met recovery *67.73/0.8841) (US\$2106.00 per ounce gold price and USD \$27.50 per ounce silver price).

5. Total values may not sum correctly due to rounding.

14.13 Leach Pad Resource

Leach pad mineral resources were previously reported in 2020 and will only be summarized here. The reader is referred to the technical report by McCrea (2020) where complete details of the resource estimation are documented.

14.13.1 Drilling and Assay Database

The 2017 sonic drill data was provided by Silver One in the form of Microsoft Excel spreadsheets. The Excel spreadsheet files contained location, survey, analytical data for the forty-five 2017 sonic drill holes collared on the leach pads and low-grade stockpiles. The author provided the data for the 36 sonic drill holes drilled on LP1 in 1992 by NERCO. The drilling and assay data provided by Silver One appears to be adequate for the purposes of this mineral resource estimate and the author has no reason to believe that any of the information is inaccurate.

14.13.2 Three-Dimensional Solid Modelling

Solid models of the leach pads were created from topographic contours of their bases, originally used for leach pad construction, and surface contours of the leach pads. Triangulated interconnected networks (TIN's) were created from the top and bottom contours of the leach pads

14.13.3 Sample Compositing

Equal length three metre (3.0 m) assay sample composites were calculated from capped assayed gold and silver values for the sonic drill holes. These 3.0 metre composites were generated starting from the collar of the sonic drill hole to its terminus where the drill holes are within the solid models of the leach pads. Any un-assayed intervals were assigned a 'Not Entered' ('NE') designation which excluded it from any composite calculation, and any composites less than 1.5 m in length were discarded so as to not introduce a short sample bias in the interpolation process.

Sample compositing the 838 assays in the solid models produced a total of 471 3-metre composites in total where 382 composites were from LP1 and 89 were from LP2. These composites were used to interpolate the resource model, where composite and assay statistics as listed in the Table 14.17.

Type of Assay Data	No.	Max Value	Mean (g/t)	Median (g/t)	Std. Dev.	Coef. Of Var.
Raw Assay Data						
Silver	978	306.2	40.30	35.70	23.52	0.58
Gold	978	0.756	0.082	0.068	0.06	0.76
Capped 3-metre C	Compo	osite Data	a			
Silver	563	101.23	39.25	36.36	16.85	0.43
Gold	563	0.343	0.082	0.075	0.049	0.60

Table 14.17: Assay Sample Data for Heap Leach Pad Domain Solids

14.13.4 Grade Capping

Cumulative probability plots were used to identify high-grade outliers for both silver and gold assays contained within the solid models of leach pads. Based upon the graphical results, raw silver assays were capped at 109.3 g/t representing the 99.30% of the 838 raw silver assays. Six silver values exceeding the cap level were each reduced to 109.3 g/t. The raw gold assay probability plot indicated a capping level at 0.343 g/t representing 99.40% of the total 838 gold assay values. Five gold assays exceeding the cap level were each reduced to 0.343 g/t.

14.13.5 Block Model

An un-rotated block model was created in GEMS software to completely cover the sonic drilltested areas: LP1 and LP2. The Block Model parameters are presented in Table 14.18.

Axis Direction	Actual Orientation	Axis	Axis Nomenclature	Origin Coordinate	Block Size (m)	No. of Blocks
Easting	090°	Х	Column	404400	5	900
Northing	000°	Y	Row	4222150	5	770
Elevation	Vertical	Z	Level	1925	2.5	130

Table 14.18: Leach Pads and Low-Grade Stockpiles Block Model Parameters

Separate block models were created for Rock Type, Density, Percent, Class, Gold and Silver. In addition, several special models were created including Distance (to the Closest Sample for first pass interpolation), Number of Samples (used in block estimation), and models for verification.

14.13.6 Semi-Variogram Analysis

The Sage 2001 variography software was utilized to evaluate the spatial continuity of the silver and gold mineralization using the capped 3-metre composite data within the constrained solid models. Conventional correlogram variography was used to model the grade continuity. Nugget effects were estimated from down-hole semi-variograms.

Search ellipses were produced for each grade-element (gold and silver) after multiple experimental semi-variograms had been generated at 30-degree intervals for strike and 15-degree intervals for dip. Modelling of both the silver and gold continuity produced moderate to poor quality experimental semi-variograms. The semi-variogram models produced for LP2 and the LGSP's were lacking data density, which is due to the small data set for that part of the resource. The LP1 variograms produced a flat-lying ellipse, slightly elongated on the Y axis. The LP1 search ellipse was used for all zones. Searches are detailed in Table 14.19.

14.13.7 Interpolation

Based upon the modelled search ellipses, silver and gold grades were estimated for each block in the block model using capped grade composites with an 'Inverse Distance Squared' interpolation.

Grade interpolation was carried out in two interpolative passes. The interpolation estimated grade in the solid models for silver and gold, requiring a minimum of 2 samples and a maximum of 12 samples to estimate a block for the first pass and a minimum of 1 sample and a maximum of 12 samples to estimate a block for the second pass. The second pass used an expanded search ellipse to write only 'zero' blocks within the search range.

Element		Range		Min #	Max #	
	Х	Y	Z	Samples	Samples	
Pass 1						
Silver	150.0	150.0	37.5	2	12	
Gold	150.0	150.0	37.5	2	12	
Pass 2						
Silver	250.0	250.0	60.0	1	12	
Gold	250.0	250.0	60.0	1	12	

Table 14.19: Search Parameters for Heap Leach Assay Domain Solid
--

14.13.8 Interpolation Validation

The validation of the leach pad and low-grade stockpile block model included visual inspections of the block grades versus silver and gold composite values and comparison of solid volumes to reported block model volumes.

A preliminary Inverse Distance Squared interpolation run was conducted to provide a visual check on the interpolation parameters. Visual inspections of the silver and gold block models on section and plan showed that the interpolation had extrapolated grades with reasonable values and distribution throughout the modelled domain.

Volume of the leach pad solids was checked against the block model and historic production records. The calculated LP1 volume of 11,886,170.0 m3 was checked against the 0.01 g/t Ag cut-off volume reported in the resource estimate of 11,799,162.0 m3. The block model is reporting 99.27% of the domain solid volume.

14.13.9 Mineral Resource Classification

Mineral resources in the LP1 have been classified as 'Indicated mineral resources' and LP2 has been classified as 'Inferred mineral resources'. These classifications are based on drill density.

14.13.10 Metal Prices

Metal prices used for the leach pad resource estimate are US \$1500 per ounce for gold and US \$20 per ounce of silver. These prices are used for calculating silver equivalents and for the exploitation scenarios related to reasonable prospects for eventual economic extraction.

14.13.11 Leach Pads Mineral Resource Statement

The leach pads will be mined in their entirety with no grade control or selectivity.

14.20	able 14.20. Leach Pau Mineral Resource with Enective Date of August 6, 2020.									
Zone/	Tonnes	Ag (FA)	Au (FA)	Ag _(soluble)	Au _(soluble)	Containe	ed Metal*			
Category	(000)	(ppm)	(ppm)	(ppm)	(ppm)	Ag (Moz)	Au (oz)			
Indicated	Indicated									
LP1	22,180	42	0.07	16	0.02	30.02	52,000			
Inferred	Inferred									
LP2	11,450	42	0.10	23	0.03	15.40	36,700			

* - Contained Metal based on fire assay grades

The effective date of the mineral resource estimate is August 6, 2020.

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

3. The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014.

4. Metal prices used for calculating silver equivalents and for the exploitation scenarios related to reasonable prospects for eventual economic extraction are USS \$1500 per ounce for gold and US \$20 per ounce of silver.

5. Total values may not sum correctly due to rounding.

14.14 Low Grade Stockpile Resource

14.14.1 General

Sub-ore grade material from open-pit mining of the Lucky Hill and Mount Diablo pits was placed in two stockpiles from the start of production in 1980 until the mid- to late-1980s. This low-grade mineralized material remains in two stockpiles, the larger of which is referred to as the SP-W stockpile, located near the southwest corner of the Mt. Diablo pit. The smaller SP-E stockpile is located 500 m northeast of the east wall of the Mount Diablo pit.

14.14.2 Drilling and Assay Database

In 2017, five sonic holes tested the SP-E stockpile and nine holes tested the SP-W stockpile. All holes were drilled from top of the stockpile into bedrock. The 2017 sonic drill data was provided by Silver One in the form of Microsoft Excel spreadsheets. The spreadsheet files contained location, survey, analytical data for the fourteen sonic drill holes collared on the two low-grade stockpiles. The drilling and assay data provided by Silver One appears to be adequate for the purposes of this mineral resource estimate and the author has no reason to believe that any of the information is inaccurate.

14.14.3 Specific Gravity Estimation

A specific gravity of 1.90 t/m³ was used to calculate LGSP tonnage which is similar to the historical SG of 1.96 t/m³ used at the mine for dumps and waste.

14.14.4 Three-Dimensional Solid Modelling

The low-grade stockpiles surface triangulated interconnected networks ("TINs") were created from Lidar-derived surface contours but the bases were created using a 5 g/t Ag cut-off. Points from the top of assays below cut-off were used to create the bottom surface by Laplace gridding. The low-grade stockpile extents were modelled as approximately a 30 m projection around the drill collars.

These 3D solid models were used to code the rock type model for the block model, code the domain of the assays and composites.

14.14.5 Sample Compositing

Equal length three metre (3.0 m) assay sample composites were calculated from gold and silver values (168 assays) for the sonic drill holes. These 3.0 metre composites were generated starting from the collar of the sonic drill hole to its terminus where the drill holes are within the solid models of the leach pads. Any un-assayed intervals were assigned a 'Not Entered' ('NE') designation which excluded it from any composite calculation, and any composites less than 1.5 m in length were discarded to not introduce a short sample bias in the interpolation process.

14.14.6 Grade Capping

There were no drill samples exceeding 98 g/t Ag and 0.3 g/t Au (Fire Assays) so no grade capping was required.

14.14.7 Block Model

An un-rotated block model was created in GEMS software to completely cover the sonic drilltested SP-E and SP-W. The Block Model parameters are presented in Table 14.18.

Separate block models were created for Rock Type, Density, Percent, Class, Gold and Silver. In addition, several special models were created including Distance (to the Closest Sample for first pass interpolation), Number of Samples (used in block estimation), and models for verification.

Based upon the modelled search ellipses, silver and gold grades were estimated for each block in the block model using grade composites with an 'Inverse Distance Squared' interpolation. Grade interpolation was carried out in two interpolative passes. The interpolation estimated grade in the solid models for silver and gold, requiring a minimum of 2 samples and a maximum of 12 samples to estimate a block for the first pass and a minimum of 1 sample and a maximum of 12 samples to estimate a block for the second pass. The second pass used an expanded search ellipse to write only 'zero' blocks within the search range. During interpolation the number of samples used for each grade element interpolation and the closest true distance to an actual composite sample were written to the 'Number of Samples' and 'Distance' block models respectively.

14.14.8 Mineral Resource Classification

Mineral resources in the Low-Grade Stockpiles have been classified as Inferred mineral resources based on drill density.

14.14.9 Low-Grade Stockpile Mineral Resource Statement

The stockpiles will be mined in their entirety and are not restricted by a cut-off grade.

 Table 14.21: Low-Grade Stockpile Inferred Mineral Resources. Effective Date April 30, 2025.

Zone	Classification	Tonnes (000)	Ag (FA) (g/t)	Au (FA) (g/t)	AgEq g/t	AgCN (g/t)	AuCN (g/t)
SP_E	Inferred	1,640	24	0.09	17	17	0.08
SP_W	Inferred	2,140	25	0.10	16	15	0.09
Total	Inferred	3,780	25	0.10	16	16	0.09

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

3. The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014.

4. Total values may not sum correctly due to rounding.

14.15 Mineral Resource Summary

All mineral resources reported on the property include the Mount Diablo and Northern Belle pits, leach pads and low-grade stockpiles. The pits are reported at a US \$9.273 NSR cut-off, underground uses a 90 g/t Ag T cut-off below the design pit and the low-grade stockpiles and leach pads are reported with no cut-off as the whole volume would be extracted. Leach pads were previously reported in 2020. (McCrea, 2020)

	Table 14.22. Classified Resources in the \$27.50 Ag Design 1 it for mount Diablo										
Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t				
Measured	5,470	50	0.15	54	101	0.19	106				
Indicated	13,250	47	0.15	52	95	0.18	100				
M&I	18,7230	48	0.15	52	96	0.19	102				
Inferred	2,780	31	0.11	34	67	0.17	72				

 Table 14.22: Classified Resources in the \$27.50 Ag Design Pit for Mount Diablo

Table 14.23: Classified Resources in Underground Continuity Shape for Mount Diablo

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t
Measured	220	76	0.13	77	175	0.28	177
Indicated	980	70	0.11	71	166	0.26	167
M&I	1,200	71	0.11	72	8	0.27	169
Inferred	650	56	0.07	57	150	0.24	150

Table 14.24: Classified Resources in the \$27.50 Ag Design Pit for Northern Belle

Classification	Tonnage (000)	AgCN g/t	AuCN g/t	AgEq g/t	Ag T g/t	Au T g/t	AgEq T g/t			
Measured	1,250	50	0.24	59	79	0.30	89			
Indicated	2,100	50	0.18	56	82.	0.25	89			
M&I	3,350	50	0.20	57	81	0.27	89			
Inferred	180	44.	0.17	47	90	0.27	93			

Table 14.25: Classified Resources in the Heap Leach Pads

Zone	Classification	Tonnage (000)	Ag (FA) (gpT)	Au (FA) (gpt)	AgEq (gpt)‡	AgCN (gpt)	AuCN (gpt)
LP1	Indicated	22,184.000	42.1	0.074	15.72	15.6	0.022
LP2	Inferred	11,451.000	41.8	0.100	23.93	23.3	0.032

Table 14.26: Low-Grade Stockpile Inferred Mineral Resources

Zone	Tonnes (000)	Ag (FA) (g/t)	Au (FA) (g/t)	AgEq g/t	AgCN (g/t)	AuCN (g/t)
SP_E	1,641.67	24.259	0.085	17.05	16.79	0.079
SP_W	2,141.84	24.957	0.105	16.00	15.04	0.094
Total	3,780	25	0.10	16	16	0.09

1. A Mineral Resource is a concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

An Inferred Mineral Resource is that part of a Mineral Resource for which quantity and grade or quality are estimated on the basis of limited geological evidence and sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality continuity.

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources with continued exploration.

An Indicated Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics are estimated with sufficient confidence to allow the application of Modifying Factors in sufficient detail to support mine planning and evaluation of the economic viability of the deposit.

Geological evidence is derived from adequately detailed and reliable exploration, sampling and testing and is sufficient to assume geological and grade or quality continuity between points of observation.

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured Mineral Resource and may only be converted to a Probable Mineral Reserve.

A Measured Mineral Resource is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are estimated with confidence sufficient to allow the application of Modifying Factors to support detailed mine planning and final evaluation of the economic viability of the deposit.

Geological evidence is derived from detailed and reliable exploration, sampling and testing and is sufficient to confirm geological and grade or quality continuity between points of observation.

A Measured Mineral Resource has a higher level of confidence than that applying to either an Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven Mineral Reserve or to a Probable Mineral Reserve.

2. Mineral resources, which are not mineral reserves, do not have demonstrated economic viability. The estimate of mineral resources have no known issues and do not appear materially affected by any known environmental, permitting, legal, title, socio-political, marketing, or other relevant issues. There is no guarantee that Silver One will be successful in obtaining any or all of the requisite consents, permits or approvals, regulatory or otherwise for the project or that the project will be placed into production.

3. The mineral resources in this study were estimated using the Canadian Institute of Mining, Metallurgy and Petroleum ('CIM'), CIM Standards on Mineral Resources and Reserves, Definitions and Guidelines prepared by the Standing Committee on Reserve Definitions and adopted by the CIM Council on May 10, 2014.

4. Silver Equivalent calculated using AgEQ formula = Ag + (Au * met recovery *67.73/0.8841) (US\$2106.00 per ounce gold price and USD \$27.50 per ounce silver price), Met recoveries in Table 14.1.

5. Total values may not sum correctly due to rounding.

Classification Total Ag Tonnes (000) Total Ag (g/t) Total Au (g/t) AgEq(T) (g/t) Contained Measured 5,470 101 0.19 106 17,688,000 33,700 18,580,000 Indicated 13,250 95 0.18 100 40,356,000 78,600 42,629,000 M&I 18,720 97 0.19 102 58,045,000 112,300 61,208,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Measured 1,250 97 0.30 89 3,163,000 12,000 3,586,000 Indicated 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 93 521,000 1,600 541,000 Inferred 180 90 0.27 93 521,000 1,7000	Mt Diablo [†]								
Measured 5,470 101 0.19 106 17,688,000 33,700 18,580,000 Indicated 13,250 95 0.18 100 40,356,000 78,600 42,629,000 M&I 18,720 97 0.19 102 58,045,000 112,300 61,208,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Classification Tonnes (000) (g/t) (g/t) AgEq(T) i oz Ag oz Au oz AgEq Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.27 89 8,710,000 29,100 9,628,000 M&I 3,350 81 0.27 93 521,000			Total Ag	TotalAu	AgEq(T)		Contained		
Indicated 13,250 95 0.18 100 40,356,000 78,600 42,629,000 M&I 18,720 97 0.19 102 58,045,000 112,300 61,208,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Inferred 2,780 67 0.17 72 5,941,000 12,300 6,460,000 Inferred 2,780 67 0.17 72 5,941,000 12,300 6,460,000 Inferred 2,780 70 0.31 80 3,163,000 12,000 3,586,000 Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.27 89 8,710,000 29,100 9,628,000 M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000<	Classification	Tonnes (000)	(g/t)	(g/t)	(g/t) +	oz Ag	oz Au	oz AgEq	
M&i 18,720 97 0.19 102 58,045,000 112,300 61,208,000 Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Northern Bellet Classification Tonnes (000) (g/t) Total Au Cortained Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&i 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,033,600 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Inferred 2,960 166 0.26 167 5,222,000 8,300 <td>Measured</td> <td>5,470</td> <td>101</td> <td>0.19</td> <td>106</td> <td>17,688,000</td> <td>33,700</td> <td>18,580,000</td>	Measured	5,470	101	0.19	106	17,688,000	33,700	18,580,000	
Inferred 2,780 67 0.17 72 5,941,000 15,400 6,460,000 Northern Belle† Classification Tonnes (000) (g/t) (g/t) AgEq(T) f Oz Ag Oz Au Oz AgEq Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 70,836,000 Inferred 2,960 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26	Indicated	13,250	95	0.18	100	40,356,000	78,600	42,629,000	
Northern Belle [†] Classification Tonnes (000) (g/t) Total Au (g/t) Total Au (g/t) Contained Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 M&I 2,2070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167	M&I	18,720	97	0.19	102	58,045,000	112,300	61,208,000	
Classification Total Ag (g/t) Total Au (g/t) Total Au (g/t) Total Au (g/t) Contained Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 M&I 2,960 68 0.18 74 6,462,000 17,000 7,0836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 200 175 0.28 177 1,223,000 8,300 5,268,0	Inferred	2,780	67	0.17	72	5,941,000	15,400	6,460,000	
Classification Tonnes (000) (g/t) (g/t) AgEq(T) I oz Ag oz Au oz AgEq Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Inferred 2,060 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.27 169 6,445,000 10,20				Northerr	n Belle†				
Measured 1,250 79 0.30 89 3,163,000 12,000 3,586,000 Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Indicated 980 150 0.24 150 3,136,000 5,100 3,14			Total Ag	Total Au			Contained		
Indicated 2,100 82 0.25 89 5,547,000 17,000 6,042,000 M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Classification	Tonnes (000)	(g/t)	(g/t)	AgEq(T) I	oz Ag	oz Au	oz AgEq	
M&I 3,350 81 0.27 89 8,710,000 29,100 9,628,000 Inferred 180 90 0.27 93 521,000 1,600 541,000 Combined Mt Diablo & Northern Belle Pits† M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Underground Resource Underground Resource Underground Resource 2,000 1,235,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Measured	1,250	79	0.30	89	3,163,000	12,000	3,586,000	
Inferred 180 90 0.27 93 521,000 1,600 541,000 Combined Mt Diablo & Northern Belle Pits† M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Indicated	2,100	82	0.25	89	5,547,000	17,000	6,042,000	
Combined Mt Diablo & Northern Belle Pits† M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	M&I	3,350	81	0.27	89	8,710,000	29,100	9,628,000	
M&I 22,070 94 0.20 100 66,754,000 141,400 70,836,000 Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Underground Resource Underground Resource 1,223,000 2,000 1,235,000 Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Inferred	180	90	0.27	93	521,000	1,600	541,000	
Inferred 2,960 68 0.18 74 6,462,000 17,000 7,001,000 Underground Resource Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Combined Mt Diablo & Northern Belle Pits ⁺								
Underground Resource Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	M&I	22,070	94	0.20	100	66,754,000	141,400	70,836,000	
Measured 220 175 0.28 177 1,223,000 2,000 1,235,000 Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000	Inferred	2,960	68	0.18	74	6,462,000	17,000	7,001,000	
Indicated 980 166 0.26 167 5,222,000 8,300 5,268,000 M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000			ι	Indergroun	d Resource				
M&I 1,200 168 0.27 169 6,445,000 10,200 6,504,000 Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000 Low-grade Stockpiles	Measured	220	175	0.28	177	1,223,000	2,000	1,235,000	
Inferred 650 150 0.24 150 3,136,000 5,100 3,146,000 Low-grade Stockpiles	Indicated	980	166	0.26	167	5,222,000	8,300	5,268,000	
Low-grade Stockpiles	M&I	1,200	168	0.27	169	6,445,000	10,200	6,504,000	
	Inferred	650	150	0.24	150	3,136,000	5,100	3,146,000	
Total Ag Total Au AgEq(T) Contained				Low-grade	Stockpiles				
			Total Ag	Total Au	AgEq(T)		Contained		
ClassificationTonnes (000)(g/t)(g/t)(g/t)oz Agoz Auoz AgEq	Classification	Tonnes (000)	(g/t)	(g/t)	(g/t) +	oz Ag	oz Au	oz AgEq	
Inferred 3,780 25 0.10 27 2,999,000 11,700 3,281,000	Inferred	3,780	25	0.10	27	2,999,000	11,700	3,281,000	
- Pit Resources tabulated below May, 1997 surface (pit surface when mining ceased in 2007) using a US \$9.273 NSR cut-off	† - Pit Resources tal	bulated below May	, 1997 surfac	e (pit surface	when mining	g ceased in 2007	7) using a US \$9	9.273 NSR cut-off	
- $AgEQ(T)$ formula = $Ag(T) + (Au(T) * recovery *67.73/0.8841)$. $AgEqT$ calculations use US\$27.50/oz Ag, US\$2,106/oz Au	- AgEQ(T) formula	$=Ag\left(T\right) +\left(Au\left(T\right) \right.$	* recovery *6	67.73/0.8841).	. AgEqT calc	culations use US	\$27.50/oz Ag , l	JS\$2,106/oz Au	
- Underground resource tabulated using a 90 gpt Ag(T) cut-off below the \$27.50 Design Pit, and using a 70% mining recover	_T - Underground res	ource tabulated us	sing a 90 gpt /	Ag(T) cut-off	below the \$2	7.50 Design Pit,	and using a 70%	% mining recovery	
ontained oz Ag - using Total Ag (Ag_T) - factored silver	Contained oz Ag - u	sing Total Ag (Ag_	T) - factored	silver					
ontained oz Au - using Total Au (Au_T) - factored gold	Contained oz Au - u	sing Total Au (Au_	T) - factored	gold					
ontained oz AgEq - using AgEq(T) factored gold - silver equivalent	Contained oz AgEq	- using AgEq(T) fac	ctored gold -	silver equival	lent				
tockpiles will be mined in their entirety with no grade control or selectivity.	Stockpiles will be m	ined in their entire	ty with no gra	de control or	selectivity.				
ield metalurgical recoveries: Ag 56%, 66%, 55% for oxide, mixed and sulfides respectively. Au 51%, 10%, 0% for oxide, ixed and sulfides, respectively.	-	-	5, 66%, 55% f	for oxide, mix	ed and sulfid	les respectively.	Au 51%, 10%,	0% for oxide,	
otal values may not add up correctly due to rounding		• •	due to roundi	ng					

Table 14.27: Mineral Resource Summary Showing Contained Silver and Gold

Candelaria Heaps										
								Con	tained Me	tal*
		Tonnes	Ag (FA)	Au (FA)	AgEq(T)	CN Soluble	CN Soluble			AgEq
Deposit	Classification	(000)	(g/t)	(g/t)	(g/t) +	Ag (g/t)	Au (g/t)	Ag (Moz)	Au (oz)	(Moz)
LP1	Indicated	22,180.000	42	0.074	43.00	16	0.022	30.02	52,000	30.84
LP2	Inferred	11,450.000	42	0.100	44.00	23	0.032	15.40	36,700	16.10
* - Contained Metal based on fire assay grades										
+ - AgEQ(T) formula = Ag (T) + (Au (T) * recovery *67.73/0.8841). Field Ag, Au recoveries were used in the calculation.										
Prices for c	alculating contai	ined silver equ	ivalents a	re US\$27.5	oz Ag and	US\$2,106 oz A	\ <i>u</i>			
LP1 cyanide	e leach estimate	d field silver a	nd gold re	coveries ar	e 25% and	20% respectiv	ely. KCA lab c	column leach	n tests Ag a	nd Au
recoveries	are 29% and 21%	%respectively								
	e leach estimate		5	coveries ar	e 35% and	25% respectiv	vely. KCA lab c	column leach	n tests Ag a	nd Au
recoveries	are 40% and 27%	% respectively								
Metal price	es used for this re	esource estim	ate were L	JS\$1500/oz	Au, US\$20	/oz Ag. Same	prices were u	sed for the	processing s	cenarios
related to r	reasonable prosp	pects for event	tual econoi	nic extract	ion					
The MRE a	bove was reporte	ed in "Technic	al Report d	on the Leac	h Pads Wit	hin the Cande	laria Property	" prepared b	y James M	cCrea in
accordance	with NI 43-101	standards, wit	h an effect	tive date A	ugust 6, 20	20.				

14.16 Reasonable Prospects for Eventual Economic Extraction

For reasonable prospects of eventual economic extraction ("RPEEE") Silver One contracted IMC of Tuson Arizona to estimate mining and operating cost for the project and using previous metallurgical test work create a mine schedule, run a pit optimization and design a preliminary pit for resource reporting.

CIM Definition Standards for Mineral Resources and Mineral Reserves (May 10, 2014) defines a mineral resource as:

"(A) concentration or occurrence of solid material of economic interest in or on the Earth's crust in such form, grade or quality and quantity that there are reasonable prospects for eventual economic extraction.

The location, quantity, grade or quality, continuity and other geological characteristics of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge, including sampling".

The "reasonable prospects for economic extraction" requirement generally implies that the quantity and grade estimates meet certain economic thresholds and that the mineral resources are reported at an appropriate cut-off grade considering extraction scenarios and processing recoveries. To meet this requirement, IMC considers the Candelaria Mine amenable to open pit extraction or underground mining with a heap leach extraction method as operated in the past.

To determine the quantities of material offering "reasonable prospects for economic extraction" by a 'pit', IMC used a pit optimizer and reasonable mining assumptions to evaluate the proportion of the block model (Indicated and Inferred blocks) that could be "reasonably expected" to be mined from an open pit (Figure 14.11).

The optimization parameters were selected based on experience and benchmarking against similar projects (Table 14.28). The reader is cautioned that the results from the pit optimization are used solely for testing the "reasonable prospects for economic extraction" by a pit and do not represent an attempt to estimate mineral reserves. There are no mineral reserves on at

Candelaria Mine. The results are used as a guide to assist in the preparation of a mineral resource statement and to select an appropriate resource reporting cut-off grade.

Table 14.28: Assumptions considered for conceptual open Pit optimization	Table 1	14.28: Assumptions	considered for cor	nceptual open Pit optimization
--	---------	--------------------	--------------------	--------------------------------

Parameter	Value	Unit
Overall Pit Wall Angles	45	degrees
Mining Cost	2.50	US\$ per tonne mined
Processing Cost	8.23	US\$ per tonne of feed
General and Administrative	1.25	US\$ per tonne of feed
Mining Dilution	5	percent
Mining Recovery	95	percent
Process recovery Au	51ox, 10mix, OSul	percent
Process recovery Ag	560x, 66mix,55Sul	percent
Sell Price Gold	2106	US\$ per ounce
Sell Price Silver	27.50	US\$ per ounce
Sell Cost	0	US\$ per ounce
In Situ Cut-off Grade	9.273	NSR

Note: Process recoveries used for RPEEE are estimated true operating field recoveries. For economic study purposes, KCA recommends discounting laboratory gold extractions by two to three percentage points, and silver extractions by three to five percentage points when estimating field recoveries.

The block model quantities and grade estimates were also reviewed to determine the portions of the Candelaria Mine having "reasonable prospects for economic extraction" from an underground mine, based on parameters summarized in Table 14.29.

Table 14.29: Assumptions considered for underground resource reporting

Parameter	Value	Unit
Mining Cost	75	US\$ per tonne mined
Processing Cost	8.23	US\$ per tonne of feed
General and Administrative	1.25	US\$ per tonne of feed
Process recovery Au	51ox, 10mix, OSul	percent
Process recovery Ag	560x, 66mix,55Sul	percent
Sell Price Gold	2106	US\$ per ounce
Sell Price Silver	27.50	US\$ per ounce
Sell Cost	0	US\$ per ounce
Mining Recovery, Room and Pilar	70%	percent

To fulfill the requirement of reasonable prospects for economic extraction, a conceptual crushing and leaching scenario using the Merrill-Crowe process was developed based on the results of the High-Pressure Grinding Rolls ("HPGR") and column cyanide leach tests. These metallurgical tests were completed by McClelland Laboratories Inc. and Kappes Cassiday & Associates in Reno, Nevada (summarized in section 13).

The scenarios evaluated were developed based on operational throughputs of 10,000 tonnes per day (tpd). The base case was the 10,000 tpd option using a silver recovery of 56%, 66% and 55% for oxide, mixed and sulfide material respectively and gold recoveries of 51%, 10% and 0% for oxide, mixed and sulfide respectively.

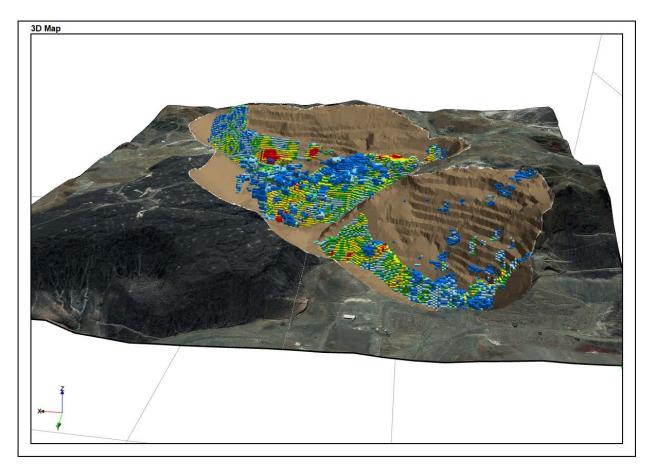


Figure 14.11: Diablo Design Pit Isometric View

14.17 Factors That May Affect Mineral Resource Estimate and Other Possible Risks

The mineral resource estimate is subject to numerous economic and technical assumptions. Example risks associated the mineral resource estimate may include:

- Unknown extent of historic workings at Mt. Diablo
- Low number of Ag and Au total assays (FA)
- Variability in CN soluble assay methodology
- Specific gravity estimates and assumptions
- Price and cost assumptions
- Recovery and processing assumptions
- Geotechnical assumptions
- Metallurgical samples are only from the leach pads and the Mount Diablo deposit (Lower Candelaria Shear). Samples from Northern Belle and outside the shear have not been tested by Silver One and may have different metallurgical characteristics and recovery factors.

23.0 ADJACENT PROPERTIES

Silver One's Candelaria property includes the most significant silver deposits within the district, the Northern Belle, Mount Diablo, and Lucky Hill deposits. There are adjacent small mines and prospects in the vicinity but these have not been investigated by the author and are not considered relevant.

24.0 OTHER RELEVANT DATA and INFORMATION

To the author's best knowledge, all the relevant material data and information on the Property have been provided in the preceding text.

25.0 INTERPRETATION and CONCLUSIONS

The QP has reached the following conclusions and interpretations as a result of the review of data and preparation of the technical report.:

25.1 Project Setting

The Project is located in an area of Nevada with moderate relief, good road access and other required infrastructure. Mining activities should be capable of being conducted year-round. There is sufficient suitable land area available within the mineral claims for any future pit expansions, leach pads, mine waste disposal, and installations such as a processing plant, and related mine infrastructure.

25.2 Mineral Tenure, Surface Rights, Water Rights and Royalties

Silver One acquired 100% interest in the Candelaria property from SSR Mining after issuing a total of US\$3,100,000 in common shares (being 10,424,374 common shares) over a threeyear period from 2017 to 2020 and assumed an US\$2,491,757 reclamation bond filed with the BLM.

The Candelaria property covers an area of approximately 8,293 ha (20,492.5 acres) and is comprised of 33 patented and 1135 unpatented federal mining claims situated on lands administered by the United States Bureau of Land Management where patented claims cover most of the immediate Northern Belle and Mount Diablo deposit areas. A 3% net smelter return royalty payable to Teck Resources USA on production from a certain claim group of the property and a charge of \$0.01 per ton payable for waste rock dumped on certain claims. Several internal third-party claims are not proximal to potential future mining operations.

The QP believes there are no environmental considerations or other significant factors or risks that may affect access, title, or the right or ability to perform exploration and development work on the Property.

25.3 Geology and Mineralization

Silver-gold-lead-zinc (\pm Sb \pm As) mineralization at Candelaria occurs primarily along thrustrelated structures including the Pickhandle thrust and the Lower Candelaria shear ("LCS"). Silver One geochemical analyses of drill core and cuttings show a close association between Ag-Au mineralization and cadmium. Subsequent weathering and oxidation of the mineralized zone occurred during the Early and Late Tertiary leaving mineralization partly to completely oxidized to a depth of 200 m.

The deposit is considered to be an example of a disseminated Ag-Au deposit hosted within sedimentary rocks and distal to a porphyry Cu deposit. The deposit type used for exploration targeting is appropriate to the mineralization identified. The deposit remains open down-dip and along strike.

Knowledge and documentation of the deposit settings, lithologies, and structural and alteration controls on mineralization are sufficient to support the Mineral Resource estimate.

25.4 Exploration, Drilling and Analytical

The exploration programs completed to date are considered appropriate to the style of the known mineralization within the Project area.

Since optioning the property in 2017, Silver One completed several surface geophysical exploration programs followed by RC and diamond drilling totalling 27,404 metres in 137 holes. Property-wide geophysical surveys have proven useful aids for interpreting deposit and regional geology and for identifying exploration drill targets.

The resource database comprises 680 historic and recent drill holes from Mount Diablo and 251 drill holes at Northern Belle with some 72,570 samples analyzed for soluble Ag and Au and 2925 recent samples which were also analyzed for total Ag by ICP or gravimetric methods and Au by fire assay and a multi-element ICP.

Total Ag and Au values were calculated by Silver One from historic drill hole soluble Ag and Au using regression formulas developed from samples reporting both cyanide soluble and total values for Ag and Au. Separate formulas were calculated for Northern Belle and Mt. Diablo and for Oxide/Mixed and Sulphide material.

Silver One maintains a robust QA/QC program that meets or exceeds industry standards. Only minor QAQC information is available for historic data; however, the data is believed to be reliable as it was used for successful mine exploration and development over a period of more than 20 years.

The drilling and assay data provided by Silver One is believed to be adequate for the purposes of this mineral resource estimate and the author has no reason to believe that any of the information is inaccurate.

25.5 Data Verification

The QP visited the subject property and area in August of 2006, on July 9th to 11th, 2018, and again on June 9th, 2023. During the 2006 site visit for Silver Standard, the author visited the two leach pads and the two open pits and collected verification samples. During the 2018 site visit the following data verifications were performed:

- examination of sonic drill collars from the 2017 drilling program on the leach pads and the east and west low-grade stockpiles;
- verification sampling of the two leach pads;
- bulk densities for the leach pads were verified by comparing recorded mine production to solid model volume.

During the 2023 site visit the following data verifications were performed

- examined diamond drill core and examined metallurgical sample and core storage; During the preparation of this report the following data verifications were performed:
- review of previous technical reports;
- manual verification of data while constructing the resource database.

The QP is of the opinion that these data are adequate for the purposes used in this technical report.

25.6 Metallurgical Test Work

Prior to 2001 the Candelaria mineralization had been mined by open-pit methods and processed by heap leaching for 20 years. Historic mine recovery averaged 51% silver. During this time extensive metallurgical testing was conducted by its various operators which also includes heap leach production records.

Silver One contracted McClelland Laboratories Inc., of Sparks, NV, in 2018 and Kappes Cassiday & Associates ("KCA") in Reno, NV, during 2018-2019 and 2022-2024, to conduct metallurgical testing on the various type of materials (leach pads and oxidized/mixed/sulphide mineralization obtained from pits and drill core). During 2023 and 2024, the Company engaged Extrakt Process Solutions ("EPS") to conduct non-cyanide leach tests. The best column cyanide-leach silver recoveries obtained by KCA in oxide, sulfide and mixed material crushed with HPGR to 1.7 mm are 61%, 58% and 72% respectively.

Metallurgical testing has been encouraging to date and is ongoing.

25.7 Mineral Resource Estimate

Mineral Resources at Candelaria are reported separately by area: Mt. Diablo and Northern Belle open-pittable; Mt. Diablo underground; leach pads and Low-Grade Stockpiles ("LGSP"). The current resources are classified as Measured, Indicated and Inferred following CIM Definition Standards (2014) and the sample database used for the estimation is adequate for the purpose used.

The Mineral Resource estimate is based on reasonable assumptions of eventual economic extraction and assuming open pit mining method for all but the small Mt. Diablo underground resource. The in-ground Mount Diablo and Northern Belle resources use a US \$9.273 NSR cut-off inside the \$27.50 Ag preliminary design pit and a 90 g/t Ag T cut-off for underground with a 70% mining recovery below the design pit. The leach pad and LGSP resources are reported with a 0.01 g/t silver cut-off grade as it will be mined in their entirety with no grade control or selectivity.

The Mineral Resource estimate is based on reasonable prospects of eventual economic extraction and assuming open pit mining method with 45° pit slope for all but the small Mt. Diablo underground resource. Production scenarios evaluated were developed based on operational throughput of 10,000 tonnes per day (tpd) and using silver recoveries of 56%, 66% and 55% for oxide, mixed and sulfide material respectively and gold recoveries of 51%, 10% and 0% for oxide, mixed and sulfide respectively.

The following factors could affect the Mineral Resources: unknown volume of underground working; assumptions used to estimate Total Ag and Au values from historic CN soluble values; limited specific gravity data; commodity price and exchange rate assumptions; pit slope angles and other geotechnical factors; assumptions used in generating the constraining pit shell, including metal recoveries, and mining and process cost assumptions.

25.8 Conclusions

The exploration and development studies completed to date by Silver One support further work as detailed in Recommendations. This work includes further exploration and resource drilling; further metallurgical testwork; environmental studies and initial permitting; and initial economic studies.

Project risk factors have been documented above and throughout the report.

26.0 RECOMMENDATIONS

Given the long history of mineral production from the Property with over 68 million ounces of silver produced, existing current mineral resources that remain open in all direction as well as the property's good exploration potential, its continued assessment is justified. A two-phase exploration program is recommended to evaluate its potential for further bulk-tonnage and undergrounds precious metal production and additional mineralization from new targets. A description of a recommended exploration program is as follows:

26.1 Proposed Exploration Budget

The recommended exploration and work programs for the Candelaria Property are as follows:

Phase I	
Update Resource and Heap-Leac	h Pads Evaluation and Project PEA
	USD
Resource update, Technical	
Report and PEA	\$400,000
Non-cyanide leach column tests	\$180,000
Environmental Baseline Studies	\$50,000
Reprocessing Permitting	\$30,000
Pilot Non-Cyanide Heap-Leach	
test (includes water line)	\$3,000,000
Contingency	\$400,000
Subtotal	\$4,060,000

The Phase II program is not contingent on positive results from the Phase I program and following a thorough compilation and review by a qualified person the following Phase II program is recommended.

Phase II	
Exploration and Resource Expansion Drilling	
RC drilling (10,000 m) all in incl. logging, sampling, surveying, materials & reporting	\$2.500,000

Subtotal	\$3,460,000
Contingency	\$300,000
Camp, Field & Travel	\$50,000
NI 43-101 Technical report	\$200,000
Geophysics (ZTEM survey)	\$270,000
Exploration new targets	\$75,000
Laboratory Tests	\$35,000
Assays (600 samples)	\$30,000
materials a reporting	\$2,500,000

Phase I Total: US\$4,060,000 Phase II Total: US\$3,460,000

Program Total: US\$7,520,000

27.0 REFERENCES

- Akright, R. L; 1985, Candelaria Silver Mine, Mineral County, Nevada, The Rebirth of a Mining Camp; in Society of Mining Engineers, Discoveries of Epithermal Precious Metal Deposits.
- Albers, J. P. and Stewart, J. J., 1972: Geology and Mineral Deposits of Esmeralda County, Nevada, Nevada Bureau of Mines and Geology Bulletin 78, p. 80 with maps.
- Beattie Consulting LTD. 2000: Preliminary Metallurgical Testwork for Candelaria Project, prepared for Silver Standard Resources, March, 2000, p.97.
- Burgess, J., 1922: Report on the Geology of the Northern Belle mine: Unpublished private report for Argentum Mining Co.
- Canadian Institute of Mining, Metallurgy and Petroleum, 2000: CIM Standards on Mineral Resources and Reserves – Definitions and Guidelines, developed by the CIM Standing Committee on Reserve Definitions and approved on May 10, 2014.
- Cann, R., 2022: Candelaria 2022 RC Drilling QC Review; internal report for Silver One Resources.
- Cann, R., 2024: Candelaria Historic Drilling Duplicate & Check Samples QC Review; internal report for Silver One Resources, 16 p.
- Cann, R. and Watkins, T., 2025: Memo Candelaria 'Factored' Total Ag Regression Formulas Update for Historic Drill Holes; Silver One internal Memo, Jan. 27, 2025, p. 13.
- Chavez, W. and P. Shrestha, 1987: Mineralogic characterisation of silver ores and heap leach material, Candelaria mine. Mineral County. Nevada. Unpublished report to NERCO. 12 p.
- Chavez, W. and P. Shrestha, 1988: Precious metal and ore-associated mineralogy of the Candelaria silver mine, Mineral County, Nevada (abstract). In Bulk-Mineable Precious Metal Deposits of the Western United States (eds. R.W. Schafer, J.J. Cooper and P.g. Vikre), Geol. Soc. Of Nevada Symposium Proc., Sparks, April 1987, p. 752.
- Cox, D., 1990: Descriptive Model of Distal Disseminated Ag-Au; Model 19c. In Developments in Mineral Deposit Modeling (ed. Bliss, J.), U.S. Geol. Survey Bull. 2004.
- Foster, J., 1988: Geology and Mineralization of the Lucky Hill Pit, Candelaria Mine, Mineral County, Nevada; thesis submitted for Master of Science in Geology, University of Nevada, 156 p. plus maps.
- Haxby, R.L. and W.A. Coster, 1978: Statistical Analyses of C-Hole and X-Hole Assays, Candelaria Silver Property, Nevada; internal memorandum to R. L. Akright, Occidental Minerals Corporation (OxyMin), 23 p. *Note: Two appendices with sample intervals and assays for C and X series holes are missing from the available SVE copy.*
- Horlocker, N., 1981: Candelaria mineralisation status of evaluation. Unpublished Oxymin memo to F. M. Monninger, 14/10/80, 8 p.

- Kappes, Cassiday & Associates, 2019: Candelaria Project: HPGR Test Work and Report of Metallurgical Test Work, June 2019, prepared by Kappes, Cassiday & Associates for Silver One Resources Inc., p. 137
- Kemp, R. T., March 2000: Candelaria Project, 1000-2000 Percussion Drill Hole and Sampling Program, Mineral County, Nevada; internal report prepared for Silver Standard Resources Inc.
- Knopf, A., 1922: The Candelaria Silver District, Nevada; U.S. Geol. Survey Bull. 735a, p.22.
- Koschmann, A. H. and Bergendahl, M. H., 1968: Principal Gold-Producing Districts of the United States; U. S. Geological Survey Professional Paper 610, p. 189.
- McCrea, J.A., 2020: Technical Report on the Heap Leach Pads within the Candelaria Property, Mineral and Esmeralda Counties, Nevada, Dated March 11, 2020, 132pp.
- Moeller, S. A, 1986: Geology and Mineralization in the Candelaria District, Mineral County, Nevada, in Bulk Mineable Precious Metal Deposits of The Western United States, Symposium Proceedings, Geological Society of Nevada, published in 1988.
- Nerco, 1991: Candelaria Exploration, 1990 Summary; January 24, 1991 internal report for NERCO, p. 64.
- Olson, J.R., 2018: Report on Cyanide and Ammonium Thiosulfate Leach Testing Candelaria Composites, prepared by McClelland Laboratories Inc. for Silver One Resources Inc.,p.99.
- Page, B., 1959: Geology of the Candelaria Mining District, Mineral County, Nevada; Nevada Bureau of Mines, Bull. 56, 67 p.
- Papke K.G., and Davis, D.A., 2002, Mining Claim Procedures for Nevada Prospectors and Miners: Nevada Bureau of Mines and Geology, Fifth Edition, accessed via the internet, website address: http://www.clarkcountynv.gov/public- works/surveyor/documents/ mining20claim20procedures.pdf.
- Ross, D. C., 1961: Geology and Mineral Deposits of Mineral County, Nevada, Nevada Bureau of Mines and Geology Bulletin 58, pp 98 with maps.
- Shenk, J., 2022: QA/QC Report, Silver One Resources, Candelaria Project; Internal report for Silver One Resources, 39 p.
- Silberman, M. L., Bonham, H. F. Jr., Garside, L. J. and Osborne, D. H. 1975. New K-Ar ages of volcanic and plutonic rocks and ore deposits in western Nevada. Isochron/West 13, 13-21.
- Snowden, 2001: Resource Estimation for The Candelaria Deposits Deep Diablo and Northern Belle, Candelaria Mine, Nevada; report prepared by Snowden Mining Industry Consultants for Silver Standard Resources Inc, May 10, 2001, 50 p.
- Speed, R. C; 1984; *Paleozoic and Mesozoic Continental Margin Collision Zone Features: Mina to Candelaria, Nevada*; in Geologic Society of America Annual Meeting, Western Geological Excursions, Volume 4.

- Stanley, K. 0., Chamberlain, C. K. and Stewart, J. H. 1977. Depositional setting of some eugeosynclinal Ordovician rocks and structurally interleaved Devonian rocks in the Cordilleran mobile belt, Nevada. In Palaeozoic Palaeogeography of the Western United States (eds. J. H. Stewart, C. H. Stevens and A. E. Fritsche), Society of Economic Palaeontologists and Mineralogists, Pacific Section, Pacific Coast Palaeogeography Symposium I, p. 259-274.
- Stevens, M.G., 2001: Candelaria Project Technical Report, NI 43-101 technical report prepared for Silver Standard Resources Inc. by Pincock Allen & Holt, May 24, 2001, PAH Project No. 9814.00e, pp. 68.
- Thomson, B.; 1990; *Geology of Silver Mineralization at Candelaria, Nevada*, USA; thesis submitted for PhD degree at the University of Aberdeen, 1990, p. 564.
- Thomson, B.; 1994; The Candelaria silver deposit Nevada preliminary sulphur, oxygen and hydrogen isotope geochemistry, Mineral Deposita, Vol. 29, pp. 318-329.
- Warner, D; 1990: Candelaria Exploration 1989 Summary; February 7, 1990 internal report for NERCO, p. 23.

APPENDIX 1

Table A1: Unpate	nted Mining and	Mill Site Claims O	ptioned from SSR Mining	t
Tuble / The Olipate	nice a mining and]

140	ie Al. Onpaten	led winning and will Sile	Sianna Optioneu no		inig
Claim	BLM Serial No.	Туре	County	Expiry Date	Company
CM 1	NMC-796473	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 2	NMC-796474	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 3	NMC-796475	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 4	NMC-796476	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 5	NMC-796477	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 6	NMC-796478	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 7	NMC-796479	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 8	NMC-796480	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 9	NMC-796481	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 10	NMC-796482	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 11	NMC-796483	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 12	NMC-796484	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 13	NMC-796485	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 14	NMC-796486	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 15	NMC-796487	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 16	NMC-796488	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 17	NMC-796489	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 18	NMC-796490	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 20	NMC-796491	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 20	NMC-796492	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 21	NMC-796493	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 22	NMC-796494	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 24	NMC-796496	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 25	NMC-796497	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 26	NMC-796498	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 27	NMC-796499	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 28	NMC-796500	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 29	NMC-796501	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 30	NMC-796502	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 31	NMC-796503	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 32	NMC-796504	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 33	NMC-796505	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 34	NMC-796506	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 35	NMC-796507	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 36	NMC-796508	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 37	NMC-796509	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 38	NMC-796510	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 39	NMC-796511	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 40	NMC-796512	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 41	NMC-796513	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 42	NMC-796514	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 43	NMC-796515	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 44	NMC-796516	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 45	NMC-796517	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 46	NMC-796518	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 47	NMC-796520	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 48	NMC-796520	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 50	NMC-796522	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 52	NMC-796524	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 54	NMC-796526	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 55	NMC-796527	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 56	NMC-796528	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
5 50				01/00/2020	

Claim	BLM Serial No.	Туре	County	Expiry Date	Company
CM 57	NMC-796529	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 58	NMC-796530	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 59	NMC-796531	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 60	NMC-796532	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 61	NMC-796533	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 62	NMC-796534	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 63	NMC-796535	Unpatented Lode Mining Claim	Mineral County & Esmeralda County	01/09/2025	CMC (SSR)
CM 64	NMC-796536	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 65	NMC-796537	Unpatented Lode Mining Claim	Mineral County & Esmeralda County	01/09/2025	CMC (SSR)
CM 66	NMC-796538	Unpatented Lode Mining Claim	Mineral County & Esmeralda County	01/09/2025	CMC (SSR)
CM 67	NMC-796539	Unpatented Lode Mining Claim	Mineral County & Esmeralda County	01/09/2025	CMC (SSR)
CM 68	NMC-796540	Unpatented Lode Mining Claim	Mineral County & Esmeralda County	01/09/2025	CMC (SSR)
CM 69	NMC-796701	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
CM 70	NMC-796541	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 71	NMC-796542	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 72	NMC-796543	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 73	NMC-796544	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 74	NMC-796545	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 75	NMC-796546	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 76	NMC-796547	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 77	NMC-796548	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 78	NMC-796549	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 79	NMC-796550	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 80	NMC-796551	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 81	NMC-796552	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 82	NMC-796553	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 83	NMC-796554	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 84	NMC-796555	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 85	NMC-796556	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 86	NMC-796557	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 87	NMC-796558	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 88	NMC-796559	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 89	NMC-796560	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 90	NMC-796561	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 91	NMC-796562	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 92	NMC-796563	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 93	NMC-796564	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 94	NMC-796565	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 95	NMC-796566	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 96	NMC-796567	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 97	NMC-796568	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 98	NMC-796569	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 99	NMC-796570	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 100	NMC-796571	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 100	NMC-796572	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 101	NMC-796573	Unpatented Lode Mining Claim	Mineral County		CMC (SSR)
CM 102 CM 103	NMC-796573		,	01/09/2025	
		Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 104	NMC-796575	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 105	NMC-796576	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 106	NMC-796577	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)

Claim	BLM Serial No.	Туре	County	Expiry Date	Company
CM 107	NMC-796578	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 108	NMC-796579	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 109	NMC-796580	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 110	NMC-796581	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 111	NMC-796582	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 112	NMC-796583	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 113	NMC-796584	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 114	NMC-796585	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 115	NMC-796586	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 116	NMC-796587	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 117	NMC-796588	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 118	NMC-796589	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 120	NMC-796590	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 120	NMC-796591	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 121	NMC-796592	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 122	NMC-796593	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 123	NMC-796594	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 124	NMC-796595	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 125	NMC-796596	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 126	NMC-796597	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 127	NMC-796598	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 128	NMC-796599	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 129	NMC-796600	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 130	NMC-796601	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 131	NMC-796602	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 132	NMC-796603	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 133	NMC-796604	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 134	NMC-796605	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 153	NMC-1086869	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 155	NMC-1086871	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 157	NMC-1086873	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 159	NMC-1086875	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 161	NMC-1086877	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 163	NMC-1086879	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 164	NMC-1086880	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 165	NMC-1086881	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 166	NMC-1086882	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 167	NMC-1086883	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 168	NMC-1086884	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 169	NMC-1086885	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 170	NMC-1086886	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 171	NMC-1086887	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 172	NMC-1086888	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 173	NMC-1086889	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 174	NMC-1086890	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 175	NMC-1086891	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 176	NMC-1086892	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 177	NMC-1086893	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 178	NMC-1086894	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 179	NMC-1086895	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 180	NMC-1086896	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 183	NMC-1102420	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 184	NMC-1102420	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)

Claim	BLM Serial No.	Туре	County	Expiry Date	Company
CM 185	NMC-1102421	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 186	NMC-1102422	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 187	NMC-1102423	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 188	NMC-1102424	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 189	NMC-1102425	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 190	NMC-1102426	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 191	NMC-1102427	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 192	NMC-1102428	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 193	NMC-1102429	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 196	NMC-1102432	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
CM 198	NMC-1102434	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
JANN 14	NMC-796447	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
JANN 15	NMC-796448	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 16	NMC-796449	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 17	NMC-796450	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR)
JANN 19	NMC-796451	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 20	NMC-796452	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 21	NMC-796453	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 22	NMC-796454	Unpatented Lode Mining Claim	Mineral County	01/09/2025	CMC (SSR
JANN 23	NMC-796455	Unpatented Lode Mining Claim	Mineral County &		CMC (SSR
			Esmeralda County	01/09/2025	
JANN 24	NMC-796456	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR
JANN 25	NMC-796457	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR
JANN 26	NMC-796458	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR
JANN 27	NMC-796459	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR
JANN 28	NMC-796460	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR
KC 1	NMC-796606	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 2	NMC-796607	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 3	NMC-796608	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 4	NMC-796609	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 5	NMC-796610	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 6	NMC-796611	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 7	NMC-796612	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 8	NMC-796613	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 9	NMC-796614	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 10	NMC-796615	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 11	NMC-796616	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 12	NMC-796617	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 13	NMC-796618	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 14	NMC-796620	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 15	NMC-796620	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 16	NMC-796621	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 17	NMC-796622	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 18	NMC-796623	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 19	NMC-796624	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 20	NMC-796625	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 21	NMC-796626	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 22	NMC-796627	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 23	NMC-796628	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 24	NMC-796629	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 25	NMC-796630	Millsite	Mineral County	01/09/2025	CMC (SSR
KC 25	NMC-796631	Millsite	Mineral County		CMC (SSR
KC 20 KC 27	NMC-796632	Millsite	Mineral County	01/09/2025	CMC (SSR CMC (SSR

Claim	BLM Serial No.	Туре	County	Expiry Date	Company
KC 28	NMC-796633	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 29	NMC-796634	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 30	NMC-796635	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 31	NMC-796636	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 32	NMC-796637	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 33	NMC-796638	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 34	NMC-796639	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 35	NMC-796640	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 36	NMC-796641	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 37	NMC-796642	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 38	NMC-796643	Millsite	Mineral County	01/09/2025	CMC (SSF
KC 39	NMC-796644	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 40	NMC-796645	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 41	NMC-796646	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 42	NMC-796647	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 43	NMC-796648	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 44	NMC-796649	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 45	NMC-796650	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 46	NMC-796651	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 47	NMC-796652	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 48	NMC-796653	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 49	NMC-796654	Millsite	Mineral County	01/09/2025	CMC (SS
KC 50	NMC-796655	Millsite	Mineral County		CMC (SSI
KC 51	NMC-796656	Millsite	Mineral County Mineral County	01/09/2025	CMC (SSI
KC 51	NMC-796657	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 52 KC 53	NMC-796658	Millsite		01/09/2025	CMC (SSI
KC 53 KC 54			Mineral County	01/09/2025	
	NMC-796659	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 55	NMC-796660	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 56	NMC-796661	Millsite	Mineral County	01/09/2025	CMC (SS
KC 57	NMC-796662	Millsite	Mineral County	01/09/2025	CMC (SS
KC 58	NMC-796663	Millsite	Mineral County	01/09/2025	CMC (SS
KC 59	NMC-796664	Millsite	Mineral County	01/09/2025	CMC (SS
KC 60	NMC-796665	Millsite	Mineral County	01/09/2025	CMC (SS
KC 61	NMC-796666	Millsite	Mineral County	01/09/2025	CMC (SS
KC 62	NMC-796667	Millsite	Mineral County	01/09/2025	CMC (SS
KC 63	NMC-796668	Millsite	Mineral County	01/09/2025	CMC (SS
KC 64	NMC-796669	Millsite	Mineral County	01/09/2025	CMC (SS
KC 65	NMC-796670	Millsite	Mineral County	01/09/2025	CMC (SS
KC 66	NMC-796671	Millsite	Mineral County	01/09/2025	CMC (SS
KC 67	NMC-796672	Millsite	Mineral County	01/09/2025	CMC (SS
KC 68	NMC-796673	Millsite	Mineral County	01/09/2025	CMC (SS
KC 69	NMC-796674	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 70	NMC-796675	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 71	NMC-796676	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 72	NMC-796677	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 73	NMC-796678	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 74	NMC-796679	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 75	NMC-796680	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 76	NMC-796681	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 77	NMC-796682	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 78	NMC-796683	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 79	NMC-796684	Millsite	Mineral County	01/09/2025	CMC (SSI
KC 80	NMC-796685	Millsite	Mineral County	01/09/2025	CMC (SSI

Claim	BLM Serial No.	Туре	County	Expiry Date	Company
KC 81	NMC-796686	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 82	NMC-796687	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 85	NMC-796688	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 86	NMC-796689	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 87	NMC-796690	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 88	NMC-796691	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 89	NMC-796692	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 90	NMC-796693	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 91	NMC-796694	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 92	NMC-796695	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 103	NMC-796696	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 104	NMC-796697	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 105	NMC-796698	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 106	NMC-796699	Millsite	Mineral County	01/09/2025	CMC (SSR)
KC 107	NMC-796700	Millsite	Mineral County	01/09/2025	CMC (SSR)
PERU 1	NMC-796466	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 2	NMC-796467	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 3	NMC-796468	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 4	NMC-796469	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 5	NMC-796470	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 6	NMC-796471	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
PERU 7	NMC-796472	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
RESCUE 17	NMC-796461	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
RESCUE 18	NMC-796462	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
RESCUE 20	NMC-796463	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
RESCUE 237	NMC-796464	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)
RESCUE 238	NMC-796465	Unpatented Lode Mining Claim	Esmeralda County	01/09/2025	CMC (SSR)

Table A2: Patented Claims Acquired from SSR Mining

Name	Patent No.	Parcel No.	County	Company
Petrel	Patent 1018577	Parcel 009-050-07	Mineral	CMC (SSR)
Belle East Extension Belle East Extension Fraction Belle East Extension No. 1 Rescue-Nobel Extension	Patent 1051427	Parcel 009-050-04	Mineral	CMC (SSR)
Secretary	Patent 17620	Parcel 009-050-02	Mineral	CMC (SSR)
Leo	Patent 17621	Parcel 009-050-02	Mineral	CMC (SSR)
Northern Belle	Patent 20590	Parcel 009-050-04	Mineral	CMC (SSR)
First Easterly Extension of Northern Belle	Patent 21234	Parcel 009-050-04	Mineral	CMC (SSR)
General Thomas No. 3	Patent 21511	Parcel 009-050-04	Mineral	CMC (SSR)
Dinero Mt. Diablo Consolidated Peru Stump & Adams Tipton	Patent 25248	Parcel 009-050-04 Parcel 009-050-05 Parcel 009-050-05 Parcel 009-050-05 Parcel 009-050-05	Mineral	CMC (SSR)
Rex (aka Rex Consolidated) Sailor Boy Small Hope Thom Paine	Patent 26941	Parcel 009-050-05	Mineral	CMC (SSR)
Commodore No. 2	Patent 34487	Parcel 009-050-04	Mineral	CMC (SSR)
Grand Morning Star Western Belle (aka Grande Western Belle)	Patent 34624	Parcel 009-050-04	Mineral	CMC (SSR)
Lent	Patent 34625	Parcel 009-050-04	Mineral	CMC (SSR)
Bar Rescue	Patent 34626	Parcel 009-050-04	Mineral	CMC (SSR)
Triangle	Patent 34627	Parcel 009-050-04	Mineral	CMC (SSR)

Name	Patent No.	Parcel No.	County	Company
Jebsen	Patent 34628	Parcel 009-050-04	Mineral	CMC (SSR)
Commodore	Patent 34629	Parcel 009-050-04	Mineral	CMC (SSR)
General Thomas No. 1 General Thomas No. 2	Patent 34630	Parcel 009-050-04	Mineral	CMC (SSR)
Consuelo Edina Geraldine Laconia Melantius Northern Belle No. 2	Patent 40448	Parcel 009-050-04	Mineral	CMC (SSR)
First Easterly Extension of Peru Quartz	Patent 6182	Parcel 009-050-05	Mineral	CMC (SSR)
First Easterly Extension of Mount Diablo Quartz	Patent 6601	Parcel 009-050-05	Mineral	CMC (SSR)
Trump Quartz	Patent 8224	Parcel 009-050-05	Mineral	CMC (SSR)
Lightening Quartz	Patent 8225	Parcel 009-050-05	Mineral	CMC (SSR)
Silver Quartz	Patent 8226	Parcel 009-050-05	Mineral	CMC (SSR)
Nobel Mine	Patent 84625	Parcel 009-050-04	Mineral	CMC (SSR)
Chief of the Hill	Patent 889107	Parcel 009-050-04	Mineral	CMC (SSR)
Red Bank	Patent 9110	Parcel 009-050-10	Mineral	CMC (SSR)
Columbus	Patent 911388	Parcel 009-050-03	Mineral	CMC (SSR)
Caesar	Patent 911403	Parcel 009-050-04	Mineral	CMC (SSR)
Atlantic Original	Patent 917665	Parcel 009-050-01	Mineral	CMC (SSR)
First Easterly Extension of Dinero Quartz	Patent 9403	Parcel 009-050-05	Mineral	CMC (SSR)

Table A3: Patented Claims Acquired by Silver One, 2019

Name	Patent No.	Parcel No.	County	Company
George Washington	Lot 49 File 172384	Parcel 009-050-08	George Washington	Silver One
Good Faith	Lot 50 File 172383	Parcel 009-050-08	Goof Faith	Silver One
Hecla Quartz`	Lot 51, 53 File 172382	Parcel 009-050-08	Hecla Quartz`	Silver One

Table A4: Claims Staked by Silver One, Located in September 2017

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
FMS 1	NMC-1149834	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 2	NMC-1149835	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 3	NMC-1149836	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 4	NMC-1149837	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 5	NMC-1149838	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 6	NMC-1149839	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 7	NMC-1149840	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 8	NMC-1149841	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 9	NMC-1149842	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 10	NMC-1149843	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 11	NMC-1149844	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 12	NMC-1149845	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 13	NMC-1149846	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 14	NMC-1149847	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 15	NMC-1149848	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 16	NMC-1149849	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 17	NMC-1149850	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 18	NMC-1149851	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 20	NMC-1149852	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 20	NMC-1149853	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 21	NMC-1149854	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 22	NMC-1149855	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 23	NMC-1149856	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
FMS 24	NMC-1149857	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 25	NMC-1149858	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 26	NMC-1149859	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 27	NMC-1149860	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 28	NMC-1149861	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 29	NMC-1149862	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 30	NMC-1149863	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 31	NMC-1149864	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 32	NMC-1149865	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 33	NMC-1149866	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 34	NMC-1149867	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 35	NMC-1149868	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 36	NMC-1149869	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 37	NMC-1149870	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 38	NMC-1149871	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 39	NMC-1149872	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 40	NMC-1149873	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 41	NMC-1149874	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 42	NMC-1149875	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 43	NMC-1149876	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 44	NMC-1149877	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 45	NMC-1149878	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 46	NMC-1149879	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 47	NMC-1149880	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 48	NMC-1149881	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 49	NMC-1149882	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 50	NMC-1149883	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 51	NMC-1149884	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 52	NMC-1149885	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 53	NMC-1149886	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 54	NMC-1149887	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 55	NMC-1149888	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 56	NMC-1149889	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 57	NMC-1149890	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 58	NMC-1149891	Unpatented Lode Mining Claim	Mineral	01/09/2025	01/09/2017	Silver One
FMS 59	NMC-1149892	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 60	NMC-1149893	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 61	NMC-1149894	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 62	NMC-1149895	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 63	NMC-1149896	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 64	NMC-1149897	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 65	NMC-1149898	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 66	NMC-1149899	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 67	NMC-1149900	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 68	NMC-1149901	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 69	NMC-1149902	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 70	NMC-1149903	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 71	NMC-1149904	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 72	NMC-1149905	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 73	NMC-1149906	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 74	NMC-1149907	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
			Mineral	01/09/2025	02/09/2017	Silver One
FMS 75	NMC-1149908	Unpatented Lode Mining Claim	winicial	01/03/2023	02/03/2017	

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
FMS 77	NMC-1149910	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 78	NMC-1149911	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 79	NMC-1149912	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 80	NMC-1149913	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 81	NMC-1149914	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 82	NMC-1149915	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 83	NMC-1149916	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 84	NMC-1149917	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 85	NMC-1149918	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 86	NMC-1149920	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 87	NMC-1149920	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 88	NMC-1149921	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 89	NMC-1149922	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 90	NMC-1149923	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 91	NMC-1149924	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 92	NMC-1149925	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 93	NMC-1149926	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 94	NMC-1149927	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 95	NMC-1149928	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 95	NMC-1149928	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 97	NMC-1149930	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 98	NMC-1149930	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 98	NMC-1149931		Mineral	+	02/09/2017	Silver One
		Unpatented Lode Mining Claim		01/09/2025		
FMS 100	NMC-1149933	Unpatented Lode Mining Claim	Mineral Mineral	01/09/2025	02/09/2017	Silver One
FMS 101 FMS 102	NMC-1149934	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One Silver One
FMS 102	NMC-1149935	Unpatented Lode Mining Claim Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 103	NMC-1149936 NMC-1149937	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 104					02/09/2017	
FMS 105	NMC-1149938	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
	NMC-1149939	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 107 FMS 108	NMC-1149940	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
	NMC-1149941	Unpatented Lode Mining Claim	Mineral	-	02/09/2017	Silver One
FMS 109	NMC-1149942	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 110	NMC-1149943	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 111	NMC-1149944	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 112	NMC-1149945	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 113	NMC-1149946	Unpatented Lode Mining Claim Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017 02/09/2017	Silver One
FMS 114	NMC-1149947	1 0	Mineral	01/09/2025		Silver One
FMS 115	NMC-1149948	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 116	NMC-1149949	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 117	NMC-1149950	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 118	NMC-1149951	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 120	NMC-1149952	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 120	NMC-1149953	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 121	NMC-1149954	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 122	NMC-1149955	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 123	NMC-1149956	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 124	NMC-1149957	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 125	NMC-1149958	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 126	NMC-1149959	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 127	NMC-1149960	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 128	NMC-1149961	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 129	NMC-1149962	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
FMS 130	NMC-1149963	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 131	NMC-1149964	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 132	NMC-1149965	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 133	NMC-1149966	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 134	NMC-1149967	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 135	NMC-1149968	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 136	NMC-1149969	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 137	NMC-1149970	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 138	NMC-1149971	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 139	NMC-1149972	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 140	NMC-1149973	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 141	NMC-1149974	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 142	NMC-1149975	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 143	NMC-1149976	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 144	NMC-1149977	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 145	NMC-1149978	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 146	NMC-1149979	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 147	NMC-1149980	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 148	NMC-1149981	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 149	NMC-1149982	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 150	NMC-1149983	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 151	NMC-1149984	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 152	NMC-1149985	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 153	NMC-1149986	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 154	NMC-1149987	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 161	NMC-1149994	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 163	NMC-1149996	Unpatented Lode Mining Claim	Mineral	01/09/2025	02/09/2017	Silver One
FMS 170	NMC-1150003	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	02/09/2017	Silver One
FMS 171	NMC-1150004	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	02/09/2017	Silver One
FMS 172	NMC-1150005	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	02/09/2017	Silver One
FMS 173	NMC-1150006	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	02/09/2017	Silver One
FMS 174	NMC-1150007	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	02/09/2017	Silver One
FMS 175	NMC-1150008	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	02/09/2017	Silver One

Table A5: Claims Staked by Silver One, Located in March 2018

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
CZ 1	NMC-1173450	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 2	NMC-1173451	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 3	NMC-1173452	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 4	NMC-1173453	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 5	NMC-1173454	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 6	NMC-1173455	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 7	NMC-1173456	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 8	NMC-1173457	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 9	NMC-1173458	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 10	NMC-1173459	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 11	NMC-1173460	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 12	NMC-1173461	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 13	NMC-1173462	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 14	NMC-1173463	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 15	NMC-1173464	Unpatented Lode Mining Claim	Mineral	01/09/2025	13/03/2018	Silver One
CZ 16	NMC-1173465	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
CZ 17	NMC-1173466	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 18	NMC-1173467	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 20	NMC-1173468	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 20	NMC-1173469	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 21	NMC-1173470	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 22	NMC-1173471	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 23	NMC-1173472	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 24	NMC-1173473	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 25	NMC-1173474	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 26	NMC-1173475	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 27	NMC-1173476	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 28	NMC-1173477	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 29	NMC-1173478	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 30	NMC-1173479	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 31	NMC-1173480	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 32	NMC-1173481	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 33	NMC-1173482	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 34	NMC-1173483	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 35	NMC-1173484	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 36	NMC-1173485	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 37	NMC-1173486	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 38	NMC-1173487	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 39	NMC-1173488	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 40	NMC-1173489	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 41	NMC-1173490	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 42	NMC-1173491	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 43	NMC-1173492	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 44	NMC-1173493	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 45	NMC-1173494	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 46	NMC-1173495	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 47	NMC-1173496	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 48	NMC-1173497	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 49	NMC-1173498	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 50	NMC-1173499	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 51	NMC-1173500	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 52	NMC-1173501	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 53	NMC-1173502	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 54	NMC-1173503	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 55	NMC-1173504	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 56	NMC-1173505	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 57	NMC-1173506	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 58	NMC-1173507	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 59	NMC-1173508	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 60	NMC-1173509	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	27/03/2018	Silver One
CZ 61	NMC-1173510	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 62	NMC-1173511	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 63	NMC-1173512	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 64	NMC-1173513	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 65	NMC-1173513	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 65	NMC-1173514	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 66 CZ 67		Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	
CZ 67 CZ 68	NMC-1173516 NMC-1173517	Unpatented Lode Mining Claim		01/09/2025	13/03/2018	Silver One
		i unualemen i ode Mining Galm	Esmeralda	01/03/2023	13/03/2018	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
CZ 70	NMC-1173520	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 71	NMC-1173520	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 72	NMC-1173521	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 73	NMC-1173522	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 74	NMC-1173523	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 75	NMC-1173524	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 76	NMC-1173525	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 77	NMC-1173526	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 78	NMC-1173527	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 79	NMC-1173528	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 80	NMC-1173529	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 81	NMC-1173530	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 82	NMC-1173531	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 83	NMC-1173532	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 84	NMC-1173533	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 85	NMC-1173534	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 86	NMC-1173535	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 87	NMC-1173536	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 88	NMC-1173537	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 89	NMC-1173538	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 90	NMC-1173539	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 91	NMC-1173540	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 92	NMC-1173541	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 93	NMC-1173542	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 94	NMC-1173543	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 95	NMC-1173544	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 96	NMC-1173545	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 97	NMC-1173546	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 98	NMC-1173547	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 99	NMC-1173548	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 100	NMC-1173549	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 100	NMC-1173550	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 101	NMC-1173551	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 102	NMC-1173552	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 103	NMC-1173553	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 104	NMC-1173554	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 105	NMC-1173555	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 100	NMC-1173556	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 107	NMC-1173557	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 108	NMC-1173557	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 109 CZ 110	NMC-1173559	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 110	NMC-1173560	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 111 CZ 112	NMC-1173560	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 112 CZ 113	NMC-1173561	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
		Unpatented Lode Mining Claim		01/09/2025		
CZ 114 CZ 115	NMC-1173563	Unpatented Lode Mining Claim	Esmeralda Esmeralda	01/09/2025	12/03/2018 12/03/2018	Silver One
CZ 115 CZ 116	NMC-1173564 NMC-1173565	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One Silver One
CZ 116 CZ 117		· · ·		01/09/2025	12/03/2018	
	NMC-1173566	Unpatented Lode Mining Claim	Esmeralda	01/09/2025		Silver One
CZ 118	NMC-1173567	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018 12/03/2018	Silver One
CZ 120	NMC-1173568	Unpatented Lode Mining Claim	Esmeralda	01/09/2025		Silver One
CZ 120	NMC-1173569	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 121	NMC-1173570	Unpatented Lode Mining Claim	Esmeralda		12/03/2018	Silver One
CZ 122	NMC-1173571	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
CZ 123	NMC-1173572	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 124	NMC-1173573	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 125	NMC-1173574	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 126	NMC-1173575	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 127	NMC-1173576	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 128	NMC-1173577	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 129	NMC-1173578	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 130	NMC-1173579	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 131	NMC-1173580	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 132	NMC-1173581	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 133	NMC-1173582	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 134	NMC-1173583	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	12/03/2018	Silver One
CZ 135	NMC-1173584	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 136	NMC-1173585	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 137	NMC-1173586	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 138	NMC-1173587	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 139	NMC-1173588	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 140	NMC-1173589	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 141	NMC-1173590	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 142	NMC-1173591	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 143	NMC-1173592	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 144	NMC-1173593	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 145	NMC-1173594	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 146	NMC-1173595	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 147	NMC-1173596	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 148	NMC-1173597	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 149	NMC-1173598	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	13/03/2018	Silver One
CZ 150	NMC-1173599	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 151	NMC-1173600	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	30/03/2018	Silver One
CZ 152	NMC-1173601	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	30/03/2018	Silver One
CZ 153	NMC-1173602	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 154	NMC-1173603	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 155	NMC-1173604	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 156	NMC-1173605	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 157	NMC-1173606	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 158	NMC-1173607	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 159	NMC-1173608	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	14/03/2018	Silver One
CZ 160	NMC-1173609	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	15/03/2018	Silver One
CZ 161	NMC-1173610	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	30/03/2018	Silver One
CZ 162	NMC-1173611	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 163	NMC-1173612	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 164	NMC-1173613	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 165	NMC-1173614	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 166	NMC-1173615	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 167	NMC-1173616	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 168	NMC-1173617	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 169	NMC-1173618	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 170	NMC-1173620	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 171	NMC-1173620	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 172	NMC-1173621	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 173	NMC-1173622	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 174	NMC-1173623	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 175	NMC-1173624	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
CZ 176	NMC-1173625	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 177	NMC-1173626	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 178	NMC-1173627	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 179	NMC-1173628	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 180	NMC-1173629	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 181	NMC-1173630	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 182	NMC-1173631	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 183	NMC-1173632	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 184	NMC-1173633	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 185	NMC-1173634	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 186	NMC-1173635	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 187	NMC-1173636	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 188	NMC-1173637	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 189	NMC-1173638	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 190	NMC-1173639	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 191	NMC-1173640	Unpatented Lode Mining Claim	Mineral	01/09/2025	16/03/2018	Silver One
CZ 192	NMC-1173641	Unpatented Lode Mining Claim	Mineral	01/09/2025	17/03/2018	Silver One
CZ 193	NMC-1173642	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 194	NMC-1173643	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CZ 195	NMC-1173644	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
CM 21N	NMC-1172849	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 23N	NMC-1172850	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 23S	NMC-1172851	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 49N	NMC-1172852	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 51N	NMC-1172853	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 53N	NMC-1172854	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 150N	NMC-1172855	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 150S	NMC-1172856	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 151N	NMC-1172857	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 152N	NMC-1172858	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 154S	NMC-1172859	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 154N	NMC-1172860	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 156N	NMC-1172861	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 158N	NMC-1172862	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 160N	NMC-1172863	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 162N	NMC-1172864	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 181N	NMC-1172865	Unpatented Lode Mining Claim	Mineral	01/09/2025	20/02/2018	Silver One
CM 182N	NMC-1172866	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 194N	NMC-1172867	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 195N	NMC-1172868	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One
CM 197N	NMC-1172869	Unpatented Lode Mining Claim	Mineral	01/09/2025	21/02/2018	Silver One

Table A6: Claims Staked by Silver One to Cover Gaps in Patented Claims

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
A-1	NMC-1173429	Unpatented Lode Mining Claim	Mineral	01/09/2025	15/03/2018	Silver One
A-2	NMC-1173430	Unpatented Lode Mining Claim	Min & Esmeralda	01/09/2025	15/03/2018	Silver One
A-3	NMC-1173431	Unpatented Lode Mining Claim	Mineral	01/09/2025	15/03/2018	Silver One
A-4	NMC-1173432	Unpatented Lode Mining Claim	Mineral	01/09/2025	15/03/2018	Silver One
A-5	NMC-1173433	Unpatented Lode Mining Claim	Mineral	01/09/2025	15/03/2018	Silver One
A-6	NMC-1173434	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-7	NMC-1173435	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-8	NMC-1173436	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
A-9	NMC-1173437	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
A-10	NMC-1173438	Unpatented Lode Mining Claim	Mineral	01/09/2025	27/03/2018	Silver One
A-11	NMC-1173439	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-12	NMC-1173440	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-13	NMC-1173441	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One
A-14	NMC-1173442	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One
A-15	NMC-1173443	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One
A-16	NMC-1173444	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One
A-17	NMC-1173445	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One
A-18	NMC-1173446	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-20	NMC-1173447	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-20	NMC-1173448	Unpatented Lode Mining Claim	Mineral	01/09/2025	28/03/2018	Silver One
A-21	NMC-1173449	Unpatented Lode Mining Claim	Mineral	01/09/2025	29/03/2018	Silver One

Table A7: Claims Acquired by Silver One from Claremont Nevada Mines

Claim	BLM Serial No.	Туре	County	Expiry Date	Loc.Date	Company
Flag 13	NMC-1149256	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 15	NMC-1149257	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 16	NMC-1149258	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 17	NMC-1149259	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 18	NMC-1149260	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 19	NMC-1149261	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 21	NMC-1149262	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 23	NMC-1149263	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 25	NMC-1149264	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One
Flag 27	NMC-1149265	Unpatented Lode Mining Claim	Esmeralda	01/09/2025	04/06/2017	Silver One

Table A8: Claims Located by Silver One in September 2019

Claim	BLM Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
NA 1	NMC-1202254	Unpatented Lode Mining Claim	Mineral	171363	01/09/2025	08/09/2019	SilverOne
NA 2	NMC-1202255	Unpatented Lode Mining Claim	Mineral	171364	01/09/2025	08/09/2019	SilverOne
NA 3	NMC-1202256	Unpatented Lode Mining Claim	Mineral	171365	01/09/2025	08/09/2019	SilverOne
NA 4	NMC-1202257	Unpatented Lode Mining Claim	Mineral	171366	01/09/2025	08/09/2019	SilverOne
NA 5	NMC-1202258	Unpatented Lode Mining Claim	Mineral	171367	01/09/2025	08/09/2019	SilverOne
NA 6	NMC-1202259	Unpatented Lode Mining Claim	Mineral	171368	01/09/2025	08/09/2019	SilverOne
NA 7	NMC-1202260	Unpatented Lode Mining Claim	Mineral	171369	01/09/2025	08/09/2019	SilverOne
NA 8	NMC-1202261	Unpatented Lode Mining Claim	Mineral	171370	01/09/2025	08/09/2019	SilverOne
NA 9	NMC-1202262	Unpatented Lode Mining Claim	Mineral	171371	01/09/2025	08/09/2019	SilverOne
NA 10	NMC-1202263	Unpatented Lode Mining Claim	Mineral	171372	01/09/2025	08/09/2019	SilverOne
NA 11	NMC-1202264	Unpatented Lode Mining Claim	Mineral	171373	01/09/2025	08/09/2019	SilverOne
NA 12	NMC-1202265	Unpatented Lode Mining Claim	Mineral	171374	01/09/2025	08/09/2019	SilverOne
NA 13	NMC-1202266	Unpatented Lode Mining Claim	Mineral	171375	01/09/2025	08/09/2019	SilverOne
NA 14	NMC-1202267	Unpatented Lode Mining Claim	Mineral	171376	01/09/2025	08/09/2019	SilverOne
NA 15	NMC-1202268	Unpatented Lode Mining Claim	Mineral	171377	01/09/2025	08/09/2019	SilverOne
NA 16	NMC-1202269	Unpatented Lode Mining Claim	Mineral	171378	01/09/2025	08/09/2019	SilverOne
NA 17	NMC-1202270	Unpatented Lode Mining Claim	Mineral	171379	01/09/2025	08/09/2019	SilverOne
NA 18	NMC-1202271	Unpatented Lode Mining Claim	Mineral	171380	01/09/2025	08/09/2019	SilverOne

Claim	BLM Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
NA 20	NMC-1202272	Unpatented Lode Mining Claim	Mineral	171381	01/09/2025	08/09/2019	SilverOne
NA 20	NMC-1202273	Unpatented Lode Mining Claim	Mineral	171382	01/09/2025	08/09/2019	SilverOne
NA 21	NMC-1202274	Unpatented Lode Mining Claim	Mineral	171383	01/09/2025	08/09/2019	SilverOne
NA 22	NMC-1202275	Unpatented Lode Mining Claim	Mineral	171384	01/09/2025	08/09/2019	SilverOne
NA 23	NMC-1202276	Unpatented Lode Mining Claim	Mineral	171385	01/09/2025	08/09/2019	SilverOne
NA 24	NMC-1202277	Unpatented Lode Mining Claim	Mineral	171386	01/09/2025	08/09/2019	SilverOne
NA 25	NMC-1202278	Unpatented Lode Mining Claim	Mineral	171387	01/09/2025	08/09/2019	SilverOne
NA 26	NMC-1202279	Unpatented Lode Mining Claim	Mineral	171388	01/09/2025	08/09/2019	SilverOne
NA 27	NMC-1202280	Unpatented Lode Mining Claim	Mineral	171389	01/09/2025	08/09/2019	SilverOne
NA 28	NMC-1202281	Unpatented Lode Mining Claim	Mineral	171390	01/09/2025	08/09/2019	SilverOne
NA 29	NMC-1202282	Unpatented Lode Mining Claim	Mineral	171391	01/09/2025	08/09/2019	SilverOne
NA 30	NMC-1202283	Unpatented Lode Mining Claim	Mineral	171392	01/09/2025	08/09/2019	SilverOne
NA 31	NMC-1202284	Unpatented Lode Mining Claim	Mineral	171393	01/09/2025	08/09/2019	SilverOne
NA 32	NMC-1202285	Unpatented Lode Mining Claim	Mineral	171394	01/09/2025	08/09/2019	SilverOne
NA 33	NMC-1202286	Unpatented Lode Mining Claim	Mineral	171395	01/09/2025	08/09/2019	SilverOne
NA 34	NMC-1202287	Unpatented Lode Mining Claim	Mineral	171396	01/09/2025	08/09/2019	SilverOne
NA 35	NMC-1202288	Unpatented Lode Mining Claim	Mineral	171397	01/09/2025	08/09/2019	SilverOne
NA 36	NMC-1202289	Unpatented Lode Mining Claim	Mineral	171398	01/09/2025	08/09/2019	SilverOne
NA 37	NMC-1202290	Unpatented Lode Mining Claim	Mineral	171399	01/09/2025	08/09/2019	SilverOne
NA 38	NMC-1202291	Unpatented Lode Mining Claim	Mineral	171400	01/09/2025	08/09/2019	SilverOne
NA 39	NMC-1202292	Unpatented Lode Mining Claim	Mineral	171401	01/09/2025	08/09/2019	SilverOne
NA 40	NMC-1202293	Unpatented Lode Mining Claim	Mineral	171402	01/09/2025	08/09/2019	SilverOne
NA 41	NMC-1202294	Unpatented Lode Mining Claim	Mineral	171403	01/09/2025	08/09/2019	SilverOne
NA 42	NMC-1202295	Unpatented Lode Mining Claim	Mineral	171404	01/09/2025	08/09/2019	SilverOne
NA 43	NMC-1202296	Unpatented Lode Mining Claim	Mineral	171405	01/09/2025	08/09/2019	SilverOne
NA 44	NMC-1202297	Unpatented Lode Mining Claim	Mineral	171406	01/09/2025	08/09/2019	SilverOne
NA 45	NMC-1202298	Unpatented Lode Mining Claim	Mineral	171400	01/09/2025	08/09/2019	SilverOne
NA 46	NMC-1202299	Unpatented Lode Mining Claim	Mineral	171408	01/09/2025	08/09/2019	SilverOne
NA 47	NMC-12022300	Unpatented Lode Mining Claim	Mineral	171409	01/09/2025	08/09/2019	SilverOne
NA 48	NMC-1202301	Unpatented Lode Mining Claim	Mineral	171409	01/09/2025	08/09/2019	SilverOne
NA 49	NMC-1202301	Unpatented Lode Mining Claim	Mineral	171410	01/09/2025	08/09/2019	SilverOne
NA 50	NMC-1202302	Unpatented Lode Mining Claim	Mineral	171412	01/09/2025	08/09/2019	SilverOne
NA 50	NMC-1202303	Unpatented Lode Mining Claim	Mineral	171412	01/09/2025	08/09/2019	SilverOne
NA 52	NMC-1202304	Unpatented Lode Mining Claim	Mineral	171413	01/09/2025	08/09/2019	SilverOne
NA 52	NMC-1202305	Unpatented Lode Mining Claim	Mineral	171414	01/09/2025	08/09/2019	SilverOne
NA 53	NMC-1202300	Unpatented Lode Mining Claim	Mineral	171415	01/09/2025	08/09/2019	SilverOne
					01/09/2025		
NA 55	NMC-1202308	Unpatented Lode Mining Claim	Mineral	171417	01/09/2025	08/09/2019	SilverOne
NA 56	NMC-1202309	Unpatented Lode Mining Claim Unpatented Lode Mining Claim	Mineral	171418	01/09/2025	08/09/2019	SilverOne
NA 57	NMC-1202310	1 0	Mineral	171420	01/09/2025	08/09/2019	SilverOne
NA 58	NMC-1202311	Unpatented Lode Mining Claim	Mineral	171420	01/09/2025	08/09/2019	SilverOne
NA 59	NMC-1202312	Unpatented Lode Mining Claim	Mineral	171421	01/09/2025	08/09/2019	SilverOne
NA 60	NMC-1202313	Unpatented Lode Mining Claim	Mineral	171422	01/09/2025	08/09/2019	SilverOne
NA 61	NMC-1202314	Unpatented Lode Mining Claim	Mineral	171423		08/09/2019	SilverOne
NA 62	NMC-1202315	Unpatented Lode Mining Claim	Mineral	171424	01/09/2025	08/09/2019	SilverOne

Claim	BLM Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
NA 63	NMC-1202316	Unpatented Lode Mining Claim	Mineral	171425	01/09/2025	08/09/2019	SilverOne
NA 64	NMC-1202317	Unpatented Lode Mining Claim	Mineral	171426	01/09/2025	08/09/2019	SilverOne
NA 65	NMC-1202318	Unpatented Lode Mining Claim	Mineral	171427	01/09/2025	08/09/2019	SilverOne
NA 66	NMC-1202320	Unpatented Lode Mining Claim	Mineral	171428	01/09/2025	08/09/2019	SilverOne
NA 67	NMC-1202320	Unpatented Lode Mining Claim	Mineral	171429	01/09/2025	08/09/2019	SilverOne
NA 68	NMC-1202321	Unpatented Lode Mining Claim	Mineral	171430	01/09/2025	08/09/2019	SilverOne
NA 69	NMC-1202322	Unpatented Lode Mining Claim	Mineral	171431	01/09/2025	08/09/2019	SilverOne
NA 70	NMC-1202323	Unpatented Lode Mining Claim	Mineral	171432	01/09/2025	08/09/2019	SilverOne
NA 71	NMC-1202324	Unpatented Lode Mining Claim	Mineral	171433	01/09/2025	08/09/2019	SilverOne
NA 72	NMC-1202325	Unpatented Lode Mining Claim	Mineral	171434	01/09/2025	08/09/2019	SilverOne
NA 73	NMC-1202326	Unpatented Lode Mining Claim	Mineral	171435	01/09/2025	08/09/2019	SilverOne
NA 74	NMC-1202327	Unpatented Lode Mining Claim	Mineral	171436	01/09/2025	08/09/2019	SilverOne
NA 75	NMC-1202328	Unpatented Lode Mining Claim	Mineral	171437	01/09/2025	08/09/2019	SilverOne
NA 76	NMC-1202329	Unpatented Lode Mining Claim	Mineral	171438	01/09/2025	08/09/2019	SilverOne
NA 77	NMC-1202330	Unpatented Lode Mining Claim	Mineral	171439	01/09/2025	08/09/2019	SilverOne
NA 78	NMC-1202331	Unpatented Lode Mining Claim	Mineral	171440	01/09/2025	08/09/2019	SilverOne
NA 79	NMC-1202332	Unpatented Lode Mining Claim	Mineral	171441	01/09/2025	08/09/2019	SilverOne
NA 80	NMC-1202333	Unpatented Lode Mining Claim	Mineral	171442	01/09/2025	08/09/2019	SilverOne
NA 81	NMC-1202334	Unpatented Lode Mining Claim	Mineral	171443	01/09/2025	08/09/2019	SilverOne
NA 82	NMC-1202335	Unpatented Lode Mining Claim	Mineral	171444	01/09/2025	08/09/2019	SilverOne
NA 83	NMC-1202336	Unpatented Lode Mining Claim	Mineral	171445	01/09/2025	08/09/2019	SilverOne
NA 84	NMC-1202337	Unpatented Lode Mining Claim	Mineral	171446	01/09/2025	08/09/2019	SilverOne
NA 85	NMC-1202338	Unpatented Lode Mining Claim	Mineral	171447	01/09/2025	08/09/2019	SilverOne

Table A9: Claims Amended by Silver One in January 2022

Claim	BLN	/ Serial No.	Туре	County	Mineral / Esmerelda	Expiry Date	Loc.Date	Company
FMS 155A	NV	105749139	Unpatented Lode Mining Claim	Mineral	180796	01/09/2025	19-01-2022	SilverOne
FMS 156A	NV	105749140	Unpatented Lode Mining Claim	Mineral	180797	01/09/2025	19-01-2022	SilverOne
FMS 157A	NV	105749141	Unpatented Lode Mining Claim	Mineral	180798	01/09/2025	19-01-2022	SilverOne
FMS 158A	NV	105749142	Unpatented Lode Mining Claim	Mineral	180799	01/09/2025	19-01-2022	SilverOne
FMS 159A	NV	105749143	Unpatented Lode Mining Claim	Mineral	180800	01/09/2025	19-01-2022	SilverOne
FMS 160A	NV	105749144	Unpatented Lode Mining Claim	Mineral	180801	01/09/2025	19-01-2022	SilverOne
FMS 162A	NV	105749145	Unpatented Lode Mining Claim	Mineral	180802	01/09/2025	19-01-2022	SilverOne
FMS 164A	NV	105749146	Unpatented Lode Mining Claim	Mineral	180803	01/09/2025	19-01-2022	SilverOne
FMS 165A	NV	105749147	Unpatented Lode Mining Claim	Mineral	180804	01/09/2025	19-01-2022	SilverOne
FMS 166A	NV	105749148	Unpatented Lode Mining Claim	Mineral	180805	01/09/2025	19-01-2022	SilverOne
FMS167A	NV	105749149	Unpatented Lode Mining Claim	Mineral	180806	01/09/2025	19-01-2022	SilverOne
FMS 168A	NV	105749150	Unpatented Lode Mining Claim	Mineral	180807	01/09/2025	19-01-2022	SilverOne
FMS 169A	NV	105749151	Unpatented Lode Mining Claim	Mineral/ Esmerelda	180808 / 231457	01/09/2025	19-01-2022	SilverOne
FMS 176A	NV	105749152	Unpatented Lode Mining Claim	Mineral	180809	01/09/2025	19-01-2022	SilverOne
FMS 177A	NV	105749153	Unpatented Lode Mining Claim	Mineral	180810	01/09/2025	19-01-2022	SilverOne
FMS 178A	NV	105749154	Unpatented Lode Mining Claim	Mineral	180811	01/09/2025	19-01-2022	SilverOne
FMS 179A	NV	105749155	Unpatented Lode Mining Claim	Mineral	180812	01/09/2025	19-01-2022	SilverOne
FMS 180A	NV	105749156	Unpatented Lode Mining Claim	Mineral	180813	01/09/2025	19-01-2022	SilverOne

Table A10: Claims Located by Silver One in June 2022
--

ClaimBLM Serial No.TypeCountyMineral #IP 1NV105762539Unpatented Lode Mining ClaimMineral181179IP 2NV105762540Unpatented Lode Mining ClaimMineral181180IP 3NV105762541Unpatented Lode Mining ClaimMineral181181	Expiry Date 01/09/2025 01/09/2025	Loc.Date 06-04-2022	Company
IP 2 NV 105762540 Unpatented Lode Mining Claim Mineral 181180		06-04-2022	
	01/09/2025		SilverOne
ID 2 NV/ 105762541 Unpertanted Lade Mining Claim Minarel 404404		06-04-2022	SilverOne
IP 3 NV 105762541 Unpatented Lode Mining Claim Mineral 181181	01/09/2025	06-04-2022	SilverOne
IP 4 NV 105762542 Unpatented Lode Mining Claim Mineral 181182	01/09/2025	06-04-2022	SilverOne
IP 5 NV 105762543 Unpatented Lode Mining Claim Mineral 181183	01/09/2025	06-04-2022	SilverOne
IP 6 NV 105762544 Unpatented Lode Mining Claim Mineral 181184	01/09/2025	06-04-2022	SilverOne
IP 7 NV 105762545 Unpatented Lode Mining Claim Mineral 181185	01/09/2025	06-04-2022	SilverOne
IP 8 NV 105762546 Unpatented Lode Mining Claim Mineral 181186	01/09/2025	06-04-2022	SilverOne
IP 9 NV 105762547 Unpatented Lode Mining Claim Mineral 181187	01/09/2025	06-04-2022	SilverOne
IP 10 NV 105762548 Unpatented Lode Mining Claim Mineral 181188	01/09/2025	06-04-2022	SilverOne
IP 11 NV 105762549 Unpatented Lode Mining Claim Mineral 181189	01/09/2025	06-04-2022	SilverOne
IP 12 NV 105762550 Unpatented Lode Mining Claim Mineral 181190	01/09/2025	06-04-2022	SilverOne
IP 13 NV 105762551 Unpatented Lode Mining Claim Mineral 181191	01/09/2025	06-04-2022	SilverOne
IP 14 NV 105762552 Unpatented Lode Mining Claim Mineral 181192	01/09/2025	06-04-2022	SilverOne
IP 15 NV 105762553 Unpatented Lode Mining Claim Mineral 181193	01/09/2025	06-04-2022	SilverOne
IP 16 NV 105762554 Unpatented Lode Mining Claim Mineral 181194	01/09/2025	06-04-2022	SilverOne
IP 17 NV 105762555 Unpatented Lode Mining Claim Mineral 181195	01/09/2025	06-04-2022	SilverOne
IP 18 NV 105762556 Unpatented Lode Mining Claim Mineral 181196	01/09/2025	06-04-2022	SilverOne
IP 19 NV 105762557 Unpatented Lode Mining Claim Mineral 181197	01/09/2025	07-04-2022	SilverOne
IP 20 NV 105762558 Unpatented Lode Mining Claim Mineral 181198	01/09/2025	07-04-2022	SilverOne
IP 21 NV 105762559 Unpatented Lode Mining Claim Mineral 181199	01/09/2025	07-04-2022	SilverOne
IP 22 NV 105762560 Unpatented Lode Mining Claim Mineral 181200	01/09/2025	07-04-2022	SilverOne
IP 23 NV 105762561 Unpatented Lode Mining Claim Mineral 181201	01/09/2025	07-04-2022	SilverOne
IP 24 NV 105762562 Unpatented Lode Mining Claim Mineral 181202	01/09/2025	07-04-2022	SilverOne
IP 25 NV 105762563 Unpatented Lode Mining Claim Mineral 181203	01/09/2025	07-04-2022	SilverOne
IP 26 NV 105762564 Unpatented Lode Mining Claim Mineral 181204	01/09/2025	07-04-2022	SilverOne
IP 27 NV 105762565 Unpatented Lode Mining Claim Mineral 181205	01/09/2025	07-04-2022	SilverOne
IP 28 NV 105762566 Unpatented Lode Mining Claim Mineral 181206	01/09/2025	07-04-2022	SilverOne
IP 29 NV 105762567 Unpatented Lode Mining Claim Mineral 181207	01/09/2025	07-04-2022	SilverOne
IP 30 NV 105762568 Unpatented Lode Mining Claim Mineral 181208	01/09/2025	07-04-2022	SilverOne
IP 31 NV 105762569 Unpatented Lode Mining Claim Mineral 181209	01/09/2025	07-04-2022	SilverOne
IP 32 NV 105762570 Unpatented Lode Mining Claim Mineral 181210	01/09/2025	08-04-2022	SilverOne
IP 33 NV 105762571 Unpatented Lode Mining Claim Mineral 181211	01/09/2025	08-04-2022	SilverOne
IP 34 NV 105762572 Unpatented Lode Mining Claim Mineral 181212	01/09/2025	08-04-2022	SilverOne
IP 35 NV 105762573 Unpatented Lode Mining Claim Mineral 181213	01/09/2025	08-04-2022	SilverOne
IP 36 NV 105762574 Unpatented Lode Mining Claim Mineral 181214	01/09/2025	08-04-2022	SilverOne
IP 37 NV 105762575 Unpatented Lode Mining Claim Mineral 181215	01/09/2025	08-04-2022	SilverOne
IP 38 NV 105762576 Unpatented Lode Mining Claim Mineral 181216	01/09/2025	08-04-2022	SilverOne
IP 39 NV 105762577 Unpatented Lode Mining Claim Mineral 181217	01/09/2025	08-04-2022	SilverOne
IP 40 NV 105762578 Unpatented Lode Mining Claim Mineral 181218	01/09/2025	08-04-2022	SilverOne
IP 41 NV 105762579 Unpatented Lode Mining Claim Mineral 181219	01/09/2025	08-04-2022	SilverOne
IP 42 NV 105762580 Unpatented Lode Mining Claim Mineral 181220	01/09/2025	02-04-2022	SilverOne
IP 43 NV 105762581 Unpatented Lode Mining Claim Mineral 181221	01/09/2025	02-04-2022	SilverOne
IP 44 NV 105762582 Unpatented Lode Mining Claim Mineral 181222	01/09/2025	02-04-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 45	NV	105762583	Unpatented Lode Mining Claim	Mineral	181223	01/09/2025	02-04-2022	SilverOne
IP 46	NV	105762584	Unpatented Lode Mining Claim	Mineral	181224	01/09/2025	02-04-2022	SilverOne
IP 47	NV	105762585	Unpatented Lode Mining Claim	Mineral	181225	01/09/2025	02-04-2022	SilverOne
IP 48	NV	105762586	Unpatented Lode Mining Claim	Mineral	181226	01/09/2025	02-04-2022	SilverOne
IP 49	NV	105762587	Unpatented Lode Mining Claim	Mineral	181227	01/09/2025	02-04-2022	SilverOne
IP 50	NV	105762588	Unpatented Lode Mining Claim	Mineral	181228	01/09/2025	04-04-2022	SilverOne
IP 51	NV	105762589	Unpatented Lode Mining Claim	Mineral	181229	01/09/2025	04-04-2022	SilverOne
IP 52	NV	105762590	Unpatented Lode Mining Claim	Mineral	181230	01/09/2025	04-04-2022	SilverOne
IP 53	NV	105762591	Unpatented Lode Mining Claim	Mineral	181231	01/09/2025	04-04-2022	SilverOne
IP 54	NV	105762592	Unpatented Lode Mining Claim	Mineral	181232	01/09/2025	04-04-2022	SilverOne
IP 55	NV	105762593	Unpatented Lode Mining Claim	Mineral	181233	01/09/2025	04-04-2022	SilverOne
IP 56	NV	105762594	Unpatented Lode Mining Claim	Mineral	181234	01/09/2025	04-04-2022	SilverOne
IP 57	NV	105762595	Unpatented Lode Mining Claim	Mineral	181235	01/09/2025	04-04-2022	SilverOne
IP 58	NV	105762596	Unpatented Lode Mining Claim	Mineral	181236	01/09/2025	04-04-2022	SilverOne
IP 59	NV	105762597	Unpatented Lode Mining Claim	Mineral	181237	01/09/2025	04-04-2022	SilverOne
IP 60	NV	105762598	Unpatented Lode Mining Claim	Mineral	181238	01/09/2025	04-04-2022	SilverOne
IP 61	NV	105762599	Unpatented Lode Mining Claim	Mineral	181239	01/09/2025	04-04-2022	SilverOne
IP 62	NV	105762600	Unpatented Lode Mining Claim	Mineral	181240	01/09/2025	04-04-2022	SilverOne
IP 63	NV	105762601	Unpatented Lode Mining Claim	Mineral	181241	01/09/2025	04-04-2022	SilverOne
IP 64	NV	105762602	Unpatented Lode Mining Claim	Mineral	181242	01/09/2025	04-04-2022	SilverOne
IP 65	NV	105762603	Unpatented Lode Mining Claim	Mineral	181243	01/09/2025	04-04-2022	SilverOne
IP 66	NV	105762604	Unpatented Lode Mining Claim	Mineral	181244	01/09/2025	04-04-2022	SilverOne
IP 67	NV	105762605	Unpatented Lode Mining Claim	Mineral	181245	01/09/2025	04-04-2022	SilverOne
IP 68	NV	105762606	Unpatented Lode Mining Claim	Mineral	181246	01/09/2025	04-04-2022	SilverOne
IP 69	NV	105762607	Unpatented Lode Mining Claim	Mineral	181247	01/09/2025	04-04-2022	SilverOne
IP 70	NV	105762608	Unpatented Lode Mining Claim	Mineral	181248	01/09/2025	04-04-2022	SilverOne
IP 71	NV	105762609	Unpatented Lode Mining Claim	Mineral	181249	01/09/2025	04-04-2022	SilverOne
IP 72	NV	105762610	Unpatented Lode Mining Claim	Mineral	181250	01/09/2025	04-04-2022	SilverOne
IP 73	NV	105762611	Unpatented Lode Mining Claim	Mineral	181251	01/09/2025	04-04-2022	SilverOne
IP 74	NV	105762612	Unpatented Lode Mining Claim	Mineral	181252	01/09/2025	04-04-2022	SilverOne
IP 75	NV	105762613	Unpatented Lode Mining Claim	Mineral	181253	01/09/2025	04-04-2022	SilverOne
IP 76	NV	105762614	Unpatented Lode Mining Claim	Mineral	181254	01/09/2025	04-04-2022	SilverOne
IP 77	NV	105762615	Unpatented Lode Mining Claim	Mineral	181255	01/09/2025	04-04-2022	SilverOne
IP 78	NV	105762616	Unpatented Lode Mining Claim	Mineral	181256	01/09/2025	05-04-2022	SilverOne
IP 79	NV	105762617	Unpatented Lode Mining Claim	Mineral	181257	01/09/2025	05-04-2022	SilverOne
IP 80	NV	105762618	Unpatented Lode Mining Claim	Mineral	181258	01/09/2025	05-04-2022	SilverOne
IP 81	NV	105762619	Unpatented Lode Mining Claim	Mineral	181259	01/09/2025	05-04-2022	SilverOne
IP 82	NV	105762620	Unpatented Lode Mining Claim	Mineral	181260	01/09/2025	05-04-2022	SilverOne
IP 83	NV	105762621	Unpatented Lode Mining Claim	Mineral	181261	01/09/2025	05-04-2022	SilverOne
IP 84	NV	105762622	Unpatented Lode Mining Claim	Mineral	181262	01/09/2025	05-04-2022	SilverOne
IP 85	NV	105762623	Unpatented Lode Mining Claim	Mineral	181263	01/09/2025	05-04-2022	SilverOne
IP 86	NV	105762624	Unpatented Lode Mining Claim	Mineral	181264	01/09/2025	05-04-2022	SilverOne
IP 87	NV	105762625	Unpatented Lode Mining Claim	Mineral	181265	01/09/2025	05-04-2022	SilverOne
IP 88	NV	105762626	Unpatented Lode Mining Claim	Mineral	181266	01/09/2025	05-04-2022	SilverOne
IP 89	NV	105762627	Unpatented Lode Mining Claim	Mineral	181267	01/09/2025	05-04-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 90	NV	105762628	Unpatented Lode Mining Claim	Mineral	181268	01/09/2025	05-04-2022	SilverOne
IP 91	NV	105762629	Unpatented Lode Mining Claim	Mineral	181269	01/09/2025	05-04-2022	SilverOne
IP 92	NV	105762630	Unpatented Lode Mining Claim	Mineral	181270	01/09/2025	05-04-2022	SilverOne
IP 93	NV	105762631	Unpatented Lode Mining Claim	Mineral	181271	01/09/2025	05-04-2022	SilverOne
IP 94	NV	105762632	Unpatented Lode Mining Claim	Mineral	181272	01/09/2025	05-04-2022	SilverOne
IP 95	NV	105762633	Unpatented Lode Mining Claim	Mineral	181273	01/09/2025	05-04-2022	SilverOne
IP 96	NV	105762634	Unpatented Lode Mining Claim	Mineral	181274	01/09/2025	05-04-2022	SilverOne
IP 97	NV	105762635	Unpatented Lode Mining Claim	Mineral	181275	01/09/2025	05-04-2022	SilverOne
IP 98	NV	105762636	Unpatented Lode Mining Claim	Mineral	181276	01/09/2025	05-04-2022	SilverOne
IP 99	NV	105762637	Unpatented Lode Mining Claim	Mineral	181277	01/09/2025	05-04-2022	SilverOne
IP 100	NV	105762638	Unpatented Lode Mining Claim	Mineral	181278	01/09/2025	05-04-2022	SilverOne
IP 101	NV	105762639	Unpatented Lode Mining Claim	Mineral	181279	01/09/2025	05-04-2022	SilverOne
IP 102	NV	105762640	Unpatented Lode Mining Claim	Mineral	181280	01/09/2025	05-04-2022	SilverOne
IP 103	NV	105762641	Unpatented Lode Mining Claim	Mineral	181281	01/09/2025	05-04-2022	SilverOne
IP 104	NV	105762642	Unpatented Lode Mining Claim	Mineral	181282	01/09/2025	05-04-2022	SilverOne
IP 105	NV	105762643	Unpatented Lode Mining Claim	Mineral	181283	01/09/2025	05-04-2022	SilverOne
IP 106	NV	105762644	Unpatented Lode Mining Claim	Mineral	181284	01/09/2025	07-04-2022	SilverOne
IP 107	NV	105762645	Unpatented Lode Mining Claim	Mineral	181285	01/09/2025	07-04-2022	SilverOne
IP 108	NV	105762646	Unpatented Lode Mining Claim	Mineral	181286	01/09/2025	07-04-2022	SilverOne
IP 109	NV	105762647	Unpatented Lode Mining Claim	Mineral	181287	01/09/2025	07-04-2022	SilverOne
IP 110	NV	105762648	Unpatented Lode Mining Claim	Mineral	181288	01/09/2025	07-04-2022	SilverOne
IP 111	NV	105762649	Unpatented Lode Mining Claim	Mineral	181289	01/09/2025	07-04-2022	SilverOne
IP 112	NV	105762650	Unpatented Lode Mining Claim	Mineral	181290	01/09/2025	07-04-2022	SilverOne
IP 113	NV	105762651	Unpatented Lode Mining Claim	Mineral	181291	01/09/2025	07-04-2022	SilverOne
IP 114	NV	105762652	Unpatented Lode Mining Claim	Mineral	181292	01/09/2025	07-04-2022	SilverOne
IP 115	NV	105762653	Unpatented Lode Mining Claim	Mineral	181293	01/09/2025	07-04-2022	SilverOne
IP 116	NV	105762654	Unpatented Lode Mining Claim	Mineral	181294	01/09/2025	07-04-2022	SilverOne
IP 117	NV	105762655	Unpatented Lode Mining Claim	Mineral	181295	01/09/2025	07-04-2022	SilverOne
IP 118	NV	105762656	Unpatented Lode Mining Claim	Mineral	181296	01/09/2025	07-04-2022	SilverOne
IP 119	NV	105762657	Unpatented Lode Mining Claim	Mineral	181297	01/09/2025	07-04-2022	SilverOne
IP 120	NV	105762658	Unpatented Lode Mining Claim	Mineral	181298	01/09/2025	07-04-2022	SilverOne
IP 121	NV	105762659	Unpatented Lode Mining Claim	Mineral	181299	01/09/2025	07-04-2022	SilverOne
IP 122	NV	105762660	Unpatented Lode Mining Claim	Mineral	181300	01/09/2025	07-04-2022	SilverOne
IP 123	NV	105762661	Unpatented Lode Mining Claim	Mineral	181301	01/09/2025	07-04-2022	SilverOne
IP 124	NV	105762662	Unpatented Lode Mining Claim	Mineral	181302	01/09/2025	07-04-2022	SilverOne
IP 125	NV	105762663	Unpatented Lode Mining Claim	Mineral	181303	01/09/2025	07-04-2022	SilverOne
IP 126	NV	105762664	Unpatented Lode Mining Claim	Mineral	181304	01/09/2025	07-04-2022	SilverOne
IP 127	NV	105762665	Unpatented Lode Mining Claim	Mineral	181305	01/09/2025	07-04-2022	SilverOne
IP 128	NV	105762666	Unpatented Lode Mining Claim	Mineral	181306	01/09/2025	07-04-2022	SilverOne
IP 129	NV	105762667	Unpatented Lode Mining Claim	Mineral	181307	01/09/2025	07-04-2022	SilverOne
IP 130	NV	105762668	Unpatented Lode Mining Claim	Mineral	181308	01/09/2025	02-04-2022	SilverOne
IP 131	NV	105762669	Unpatented Lode Mining Claim	Mineral	181309	01/09/2025	02-04-2022	SilverOne
IP 132	NV	105762670	Unpatented Lode Mining Claim	Mineral	181310	01/09/2025	31-03-2022	SilverOne
IP 133	NV	105762671	Unpatented Lode Mining Claim	Mineral	181311	01/09/2025	31-03-2022	SilverOne
IP 134	NV	105762672	Unpatented Lode Mining Claim	Mineral	181312	01/09/2025	31-03-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 135	NV	105762673	Unpatented Lode Mining Claim	Mineral	181313	01/09/2025	31-03-2022	SilverOne
IP 136	NV	105762674	Unpatented Lode Mining Claim	Mineral	181314	01/09/2025	31-03-2022	SilverOne
IP 137	NV	105762675	Unpatented Lode Mining Claim	Mineral	181315	01/09/2025	31-03-2022	SilverOne
IP 138	NV	105762676	Unpatented Lode Mining Claim	Mineral	181316	01/09/2025	31-03-2022	SilverOne
IP 139	NV	105762677	Unpatented Lode Mining Claim	Mineral	181317	01/09/2025	31-03-2022	SilverOne
IP 140	NV	105762678	Unpatented Lode Mining Claim	Mineral	181318	01/09/2025	31-03-2022	SilverOne
IP 141	NV	105762679	Unpatented Lode Mining Claim	Mineral	181319	01/09/2025	31-03-2022	SilverOne
IP 142	NV	105762680	Unpatented Lode Mining Claim	Mineral	181320	01/09/2025	31-03-2022	SilverOne
IP 143	NV	105762681	Unpatented Lode Mining Claim	Mineral	181321	01/09/2025	31-03-2022	SilverOne
IP 144	NV	105762682	Unpatented Lode Mining Claim	Mineral	181322	01/09/2025	31-03-2022	SilverOne
IP 145	NV	105762683	Unpatented Lode Mining Claim	Mineral	181323	01/09/2025	31-03-2022	SilverOne
IP 146	NV	105762684	Unpatented Lode Mining Claim	Mineral	181324	01/09/2025	31-03-2022	SilverOne
IP 147	NV	105762685	Unpatented Lode Mining Claim	Mineral	181325	01/09/2025	31-03-2022	SilverOne
IP 148	NV	105762686	Unpatented Lode Mining Claim	Mineral	181326	01/09/2025	31-03-2022	SilverOne
IP 149	NV	105762687	Unpatented Lode Mining Claim	Mineral	181327	01/09/2025	31-03-2022	SilverOne
IP 150	NV	105762688	Unpatented Lode Mining Claim	Mineral	181328	01/09/2025	31-03-2022	SilverOne
IP 151	NV	105762689	Unpatented Lode Mining Claim	Mineral	181329	01/09/2025	31-03-2022	SilverOne
IP 152	NV	105762690	Unpatented Lode Mining Claim	Mineral	181330	01/09/2025	31-03-2022	SilverOne
IP 153	NV	105762691	Unpatented Lode Mining Claim	Mineral	181331	01/09/2025	31-03-2022	SilverOne
IP 154	NV	105762692	Unpatented Lode Mining Claim	Mineral	181332	01/09/2025	31-03-2022	SilverOne
IP 155	NV	105762693	Unpatented Lode Mining Claim	Mineral	181333	01/09/2025	31-03-2022	SilverOne
IP 156	NV	105762694	Unpatented Lode Mining Claim	Mineral	181334	01/09/2025	31-03-2022	SilverOne
IP 157	NV	105762695	Unpatented Lode Mining Claim	Mineral	181335	01/09/2025	31-03-2022	SilverOne
IP 158	NV	105762696	Unpatented Lode Mining Claim	Mineral	181336	01/09/2025	31-03-2022	SilverOne
IP 159	NV	105762697	Unpatented Lode Mining Claim	Mineral	181337	01/09/2025	31-03-2022	SilverOne
IP 160	NV	105762698	Unpatented Lode Mining Claim	Mineral	181338	01/09/2025	31-03-2022	SilverOne
IP 161	NV	105762699	Unpatented Lode Mining Claim	Mineral	181339	01/09/2025	31-03-2022	SilverOne
IP 162	NV	105762700	Unpatented Lode Mining Claim	Mineral	181340	01/09/2025	31-03-2022	SilverOne
IP 163	NV	105762701	Unpatented Lode Mining Claim	Mineral	181341	01/09/2025	31-03-2022	SilverOne
IP 164	NV	105762702	Unpatented Lode Mining Claim	Mineral	181342	01/09/2025	31-03-2022	SilverOne
IP 165	NV	105762703	Unpatented Lode Mining Claim	Mineral	181343	01/09/2025	31-03-2022	SilverOne
IP 166	NV	105762704	Unpatented Lode Mining Claim	Mineral	181344	01/09/2025	31-03-2022	SilverOne
IP 167	NV	105762705	Unpatented Lode Mining Claim	Mineral	181345	01/09/2025	31-03-2022	SilverOne
IP 168	NV	105762706	Unpatented Lode Mining Claim	Mineral	181346	01/09/2025	31-03-2022	SilverOne
IP 169	NV	105762707	Unpatented Lode Mining Claim	Mineral	181347	01/09/2025	31-03-2022	SilverOne
IP 170	NV	105762708	Unpatented Lode Mining Claim	Mineral	181348	01/09/2025	31-03-2022	SilverOne
IP 171	NV	105762709	Unpatented Lode Mining Claim	Mineral	181349	01/09/2025	31-03-2022	SilverOne
IP 172	NV	105762710	Unpatented Lode Mining Claim	Mineral	181350	01/09/2025	31-03-2022	SilverOne
IP 173	NV	105762711	Unpatented Lode Mining Claim	Mineral	181351	01/09/2025	31-03-2022	SilverOne
IP 174	NV	105762712	Unpatented Lode Mining Claim	Mineral	181352	01/09/2025	31-03-2022	SilverOne
IP 175	NV	105762713	Unpatented Lode Mining Claim	Mineral	181353	01/09/2025	31-03-2022	SilverOne
IP 176	NV	105762714	Unpatented Lode Mining Claim	Mineral	181354	01/09/2025	31-03-2022	SilverOne
IP 177	NV	105762715	Unpatented Lode Mining Claim	Mineral	181355	01/09/2025	31-03-2022	SilverOne
IP 178	NV	105762716	Unpatented Lode Mining Claim	Mineral	181356	01/09/2025	01-04-2022	SilverOne
IP 179	NV	105762717	Unpatented Lode Mining Claim	Mineral	181357	01/09/2025	01-04-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 180	NV	105762718	Unpatented Lode Mining Claim	Mineral	181358	01/09/2025	01-04-2022	SilverOne
IP 181	NV	105762719	Unpatented Lode Mining Claim	Mineral	181359	01/09/2025	01-04-2022	SilverOne
IP 182	NV	105762720	Unpatented Lode Mining Claim	Mineral	181360	01/09/2025	01-04-2022	SilverOne
IP 183	NV	105762721	Unpatented Lode Mining Claim	Mineral	181361	01/09/2025	01-04-2022	SilverOne
IP 184	NV	105762722	Unpatented Lode Mining Claim	Mineral	181362	01/09/2025	01-04-2022	SilverOne
IP 185	NV	105762723	Unpatented Lode Mining Claim	Mineral	181363	01/09/2025	01-04-2022	SilverOne
IP 186	NV	105762724	Unpatented Lode Mining Claim	Mineral	181364	01/09/2025	01-04-2022	SilverOne
IP 187	NV	105762725	Unpatented Lode Mining Claim	Mineral	181365	01/09/2025	01-04-2022	SilverOne
IP 188	NV	105762726	Unpatented Lode Mining Claim	Mineral	181366	01/09/2025	01-04-2022	SilverOne
IP 189	NV	105762727	Unpatented Lode Mining Claim	Mineral	181367	01/09/2025	01-04-2022	SilverOne
IP 190	NV	105762728	Unpatented Lode Mining Claim	Mineral	181368	01/09/2025	01-04-2022	SilverOne
IP 191	NV	105762729	Unpatented Lode Mining Claim	Mineral	181369	01/09/2025	01-04-2022	SilverOne
IP 192	NV	105762730	Unpatented Lode Mining Claim	Mineral	181370	01/09/2025	01-04-2022	SilverOne
IP 193	NV	105762731	Unpatented Lode Mining Claim	Mineral	181371	01/09/2025	01-04-2022	SilverOne
IP 194	NV	105762732	Unpatented Lode Mining Claim	Mineral	181372	01/09/2025	01-04-2022	SilverOne
IP 195	NV	105762733	Unpatented Lode Mining Claim	Mineral	181373	01/09/2025	01-04-2022	SilverOne
IP 196	NV	105762734	Unpatented Lode Mining Claim	Mineral	181374	01/09/2025	01-04-2022	SilverOne
IP 197	NV	105762735	Unpatented Lode Mining Claim	Mineral	181375	01/09/2025	01-04-2022	SilverOne
IP 198	NV	105762736	Unpatented Lode Mining Claim	Mineral	181376	01/09/2025	01-04-2022	SilverOne
IP 199	NV	105762737	Unpatented Lode Mining Claim	Mineral	181377	01/09/2025	01-04-2022	SilverOne
IP 200	NV	105762738	Unpatented Lode Mining Claim	Mineral	181378	01/09/2025	01-04-2022	SilverOne
IP 201	NV	105762739	Unpatented Lode Mining Claim	Mineral	181379	01/09/2025	01-04-2022	SilverOne
IP 202	NV	105762740	Unpatented Lode Mining Claim	Mineral	181380	01/09/2025	01-04-2022	SilverOne
IP 203	NV	105762741	Unpatented Lode Mining Claim	Mineral	181381	01/09/2025	01-04-2022	SilverOne
IP 204	NV	105762742	Unpatented Lode Mining Claim	Mineral	181382	01/09/2025	01-04-2022	SilverOne
IP 205	NV	105762743	Unpatented Lode Mining Claim	Mineral	181383	01/09/2025	01-04-2022	SilverOne
IP 206	NV	105762744	Unpatented Lode Mining Claim	Mineral	181384	01/09/2025	01-04-2022	SilverOne
IP 207	NV	105762745	Unpatented Lode Mining Claim	Mineral	181385	01/09/2025	01-04-2022	SilverOne
IP 208	NV	105762746	Unpatented Lode Mining Claim	Mineral	181386	01/09/2025	02-04-2022	SilverOne
IP 209	NV	105762747	Unpatented Lode Mining Claim	Mineral	181387	01/09/2025	02-04-2022	SilverOne
IP 210	NV	105762748	Unpatented Lode Mining Claim	Mineral	181388	01/09/2025	02-04-2022	SilverOne
IP 211	NV	105762749	Unpatented Lode Mining Claim	Mineral	181389	01/09/2025	02-04-2022	SilverOne
IP 212	NV	105762750	Unpatented Lode Mining Claim	Mineral	181390	01/09/2025	02-04-2022	SilverOne
IP 213	NV	105762751	Unpatented Lode Mining Claim	Mineral	181391	01/09/2025	02-04-2022	SilverOne
IP 214	NV	105762752	Unpatented Lode Mining Claim	Mineral	181392	01/09/2025	02-04-2022	SilverOne
IP 215	NV	105762753	Unpatented Lode Mining Claim	Mineral	181393	01/09/2025	02-04-2022	SilverOne
IP 216	NV	105762754	Unpatented Lode Mining Claim	Mineral	181394	01/09/2025	02-04-2022	SilverOne
IP 217	NV	105762755	Unpatented Lode Mining Claim	Mineral	181395	01/09/2025	02-04-2022	SilverOne
IP 218	NV	105762756	Unpatented Lode Mining Claim	Mineral	181396	01/09/2025	02-04-2022	SilverOne
IP 219	NV	105762757	Unpatented Lode Mining Claim	Mineral	181397	01/09/2025	02-04-2022	SilverOne
IP 220	NV	105762758	Unpatented Lode Mining Claim	Mineral	181398	01/09/2025	02-04-2022	SilverOne
IP 221	NV	105762759	Unpatented Lode Mining Claim	Mineral	181399	01/09/2025	31-03-2022	SilverOne
IP 222	NV	105762760	Unpatented Lode Mining Claim	Mineral	181400	01/09/2025	31-03-2022	SilverOne
IP 223	NV	105762761	Unpatented Lode Mining Claim	Mineral	181401	01/09/2025	31-03-2022	SilverOne
IP 224	NV	105762762	Unpatented Lode Mining Claim	Mineral	181402	01/09/2025	31-03-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 225	NV	105762763	Unpatented Lode Mining Claim	Mineral	181403	01/09/2025	31-03-2022	SilverOne
IP 226	NV	105762764	Unpatented Lode Mining Claim	Mineral	181404	01/09/2025	31-03-2022	SilverOne
IP 227	NV	105762765	Unpatented Lode Mining Claim	Mineral	181405	01/09/2025	31-03-2022	SilverOne
IP 228	NV	105762766	Unpatented Lode Mining Claim	Mineral	181406	01/09/2025	31-03-2022	SilverOne
IP 229	NV	105762767	Unpatented Lode Mining Claim	Mineral	181407	01/09/2025	31-03-2022	SilverOne
IP 230	NV	105762768	Unpatented Lode Mining Claim	Mineral	181408	01/09/2025	31-03-2022	SilverOne
IP 231	NV	105762769	Unpatented Lode Mining Claim	Mineral	181409	01/09/2025	31-03-2022	SilverOne
IP 232	NV	105762770	Unpatented Lode Mining Claim	Mineral	181410	01/09/2025	31-03-2022	SilverOne
IP 233	NV	105762771	Unpatented Lode Mining Claim	Mineral	181411	01/09/2025	31-03-2022	SilverOne
IP 234	NV	105762772	Unpatented Lode Mining Claim	Mineral	181412	01/09/2025	31-03-2022	SilverOne
IP 235	NV	105762773	Unpatented Lode Mining Claim	Mineral	181413	01/09/2025	31-03-2022	SilverOne
IP 236	NV	105762774	Unpatented Lode Mining Claim	Mineral	181414	01/09/2025	31-03-2022	SilverOne
IP 237	NV	105762775	Unpatented Lode Mining Claim	Mineral	181415	01/09/2025	31-03-2022	SilverOne
IP 238	NV	105762776	Unpatented Lode Mining Claim	Mineral	181416	01/09/2025	31-03-2022	SilverOne
IP 239	NV	105762777	Unpatented Lode Mining Claim	Mineral	181417	01/09/2025	31-03-2022	SilverOne
IP 240	NV	105762778	Unpatented Lode Mining Claim	Mineral	181418	01/09/2025	31-03-2022	SilverOne
IP 241	NV	105762779	Unpatented Lode Mining Claim	Mineral	181419	01/09/2025	31-03-2022	SilverOne
IP 242	NV	105762780	Unpatented Lode Mining Claim	Mineral	181420	01/09/2025	31-03-2022	SilverOne
IP 243	NV	105762781	Unpatented Lode Mining Claim	Mineral	181421	01/09/2025	31-03-2022	SilverOne
IP 244	NV	105762782	Unpatented Lode Mining Claim	Mineral	181422	01/09/2025	31-03-2022	SilverOne
IP 245	NV	105762783	Unpatented Lode Mining Claim	Mineral	181423	01/09/2025	31-03-2022	SilverOne
IP 246	NV	105762784	Unpatented Lode Mining Claim	Mineral	181424	01/09/2025	31-03-2022	SilverOne
IP 247	NV	105762785	Unpatented Lode Mining Claim	Mineral	181425	01/09/2025	31-03-2022	SilverOne
IP 248	NV	105762786	Unpatented Lode Mining Claim	Mineral	181426	01/09/2025	31-03-2022	SilverOne
IP 249	NV	105762787	Unpatented Lode Mining Claim	Mineral	181427	01/09/2025	31-03-2022	SilverOne
IP 250	NV	105762788	Unpatented Lode Mining Claim	Mineral	181428	01/09/2025	31-03-2022	SilverOne
IP 251	NV	105762789	Unpatented Lode Mining Claim	Mineral	181429	01/09/2025	31-03-2022	SilverOne
IP 252	NV	105762790	Unpatented Lode Mining Claim	Mineral	181430	01/09/2025	31-03-2022	SilverOne
IP 253	NV	105762791	Unpatented Lode Mining Claim	Mineral	181431	01/09/2025	31-03-2022	SilverOne
IP 254	NV	105762792	Unpatented Lode Mining Claim	Mineral	181432	01/09/2025	31-03-2022	SilverOne
IP 255	NV	105762793	Unpatented Lode Mining Claim	Mineral	181433	01/09/2025	30-03-2022	SilverOne
IP 256	NV	105762794	Unpatented Lode Mining Claim	Mineral	181434	01/09/2025	30-03-2022	SilverOne
IP 257	NV	105762795	Unpatented Lode Mining Claim	Mineral	181435	01/09/2025	30-03-2022	SilverOne
IP 258	NV	105762796	Unpatented Lode Mining Claim	Mineral	181436	01/09/2025	30-03-2022	SilverOne
IP 259	NV	105762797	Unpatented Lode Mining Claim	Mineral	181437	01/09/2025	30-03-2022	SilverOne
IP 260	NV	105762798	Unpatented Lode Mining Claim	Mineral	181438	01/09/2025	30-03-2022	SilverOne
IP 261	NV	105762799	Unpatented Lode Mining Claim	Mineral	181439	01/09/2025	30-03-2022	SilverOne
IP 262	NV	105762800	Unpatented Lode Mining Claim	Mineral	181440	01/09/2025	30-03-2022	SilverOne
IP 263	NV	105762801	Unpatented Lode Mining Claim	Mineral	181441	01/09/2025	30-03-2022	SilverOne
IP 264	NV	105762802	Unpatented Lode Mining Claim	Mineral	181442	01/09/2025	30-03-2022	SilverOne
IP 265	NV	105762803	Unpatented Lode Mining Claim	Mineral	181443	01/09/2025	30-03-2022	SilverOne
IP 266	NV	105762804	Unpatented Lode Mining Claim	Mineral	181444	01/09/2025	30-03-2022	SilverOne
IP 267	NV	105762805	Unpatented Lode Mining Claim	Mineral	181445	01/09/2025	30-03-2022	SilverOne
IP 268	NV	105762806	Unpatented Lode Mining Claim	Mineral	181446	01/09/2025	30-03-2022	SilverOne
IP 269	NV	105762807	Unpatented Lode Mining Claim	Mineral	181447	01/09/2025	30-03-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 270	NV	105762808	Unpatented Lode Mining Claim	Mineral	181448	01/09/2025	30-03-2022	SilverOne
IP 271	NV	105762809	Unpatented Lode Mining Claim	Mineral	181449	01/09/2025	30-03-2022	SilverOne
IP 272	NV	105762810	Unpatented Lode Mining Claim	Mineral	181450	01/09/2025	30-03-2022	SilverOne
IP 273	NV	105762811	Unpatented Lode Mining Claim	Mineral	181451	01/09/2025	30-03-2022	SilverOne
IP 274	NV	105762812	Unpatented Lode Mining Claim	Mineral	181452	01/09/2025	30-03-2022	SilverOne
IP 275	NV	105762813	Unpatented Lode Mining Claim	Mineral	181453	01/09/2025	30-03-2022	SilverOne
IP 276	NV	105762814	Unpatented Lode Mining Claim	Mineral	181454	01/09/2025	30-03-2022	SilverOne
IP 277	NV	105762815	Unpatented Lode Mining Claim	Mineral	181455	01/09/2025	30-03-2022	SilverOne
IP 278	NV	105762816	Unpatented Lode Mining Claim	Mineral	181456	01/09/2025	30-03-2022	SilverOne
IP 279	NV	105762817	Unpatented Lode Mining Claim	Mineral	181457	01/09/2025	30-03-2022	SilverOne
IP 280	NV	105762818	Unpatented Lode Mining Claim	Mineral	181458	01/09/2025	30-03-2022	SilverOne
IP 281	NV	105762819	Unpatented Lode Mining Claim	Mineral	181459	01/09/2025	30-03-2022	SilverOne
IP 282	NV	105762820	Unpatented Lode Mining Claim	Mineral	181460	01/09/2025	30-03-2022	SilverOne
IP 283	NV	105762821	Unpatented Lode Mining Claim	Mineral	181461	01/09/2025	30-03-2022	SilverOne
IP 284	NV	105762822	Unpatented Lode Mining Claim	Mineral	181462	01/09/2025	30-03-2022	SilverOne
IP 285	NV	105762823	Unpatented Lode Mining Claim	Mineral	181463	01/09/2025	30-03-2022	SilverOne
IP 286	NV	105762824	Unpatented Lode Mining Claim	Mineral	181464	01/09/2025	30-03-2022	SilverOne
IP 287	NV	105762825	Unpatented Lode Mining Claim	Mineral	181465	01/09/2025	30-03-2022	SilverOne
IP 288	NV	105762826	Unpatented Lode Mining Claim	Mineral	181466	01/09/2025	30-03-2022	SilverOne
IP 289	NV	105762827	Unpatented Lode Mining Claim	Mineral	181467	01/09/2025	30-03-2022	SilverOne
IP 290	NV	105762828	Unpatented Lode Mining Claim	Mineral	181468	01/09/2025	30-03-2022	SilverOne
IP 291	NV	105762829	Unpatented Lode Mining Claim	Mineral	181469	01/09/2025	30-03-2022	SilverOne
IP 292	NV	105762830	Unpatented Lode Mining Claim	Mineral	181470	01/09/2025	30-03-2022	SilverOne
IP 293	NV	105762831	Unpatented Lode Mining Claim	Mineral	181471	01/09/2025	30-03-2022	SilverOne
IP 294	NV	105762832	Unpatented Lode Mining Claim	Mineral	181472	01/09/2025	30-03-2022	SilverOne
IP 295	NV	105762833	Unpatented Lode Mining Claim	Mineral	181473	01/09/2025	30-03-2022	SilverOne
IP 296	NV	105762834	Unpatented Lode Mining Claim	Mineral	181474	01/09/2025	30-03-2022	SilverOne
IP 297	NV	105762835	Unpatented Lode Mining Claim	Mineral	181475	01/09/2025	30-03-2022	SilverOne
IP 298	NV	105762836	Unpatented Lode Mining Claim	Mineral	181476	01/09/2025	30-03-2022	SilverOne
IP 299	NV	105762837	Unpatented Lode Mining Claim	Mineral	181477	01/09/2025	30-03-2022	SilverOne
IP 300	NV	105762838	Unpatented Lode Mining Claim	Mineral	181478	01/09/2025	30-03-2022	SilverOne
IP 301	NV	105762839	Unpatented Lode Mining Claim	Mineral	181479	01/09/2025	30-03-2022	SilverOne
IP 302	NV	105762840	Unpatented Lode Mining Claim	Mineral	181480	01/09/2025	30-03-2022	SilverOne
IP 303	NV	105762841	Unpatented Lode Mining Claim	Mineral	181481	01/09/2025	30-03-2022	SilverOne
IP 304	NV	105762842	Unpatented Lode Mining Claim	Mineral	181482	01/09/2025	30-03-2022	SilverOne
IP 305	NV	105762843	Unpatented Lode Mining Claim	Mineral	181483	01/09/2025	30-03-2022	SilverOne
IP 306	NV	105762844	Unpatented Lode Mining Claim	Mineral	181484	01/09/2025	30-03-2022	SilverOne
IP 307	NV	105762845	Unpatented Lode Mining Claim	Mineral	181485	01/09/2025	30-03-2022	SilverOne
IP 308	NV	105762846	Unpatented Lode Mining Claim	Mineral	181486	01/09/2025	30-03-2022	SilverOne
IP 309	NV	105762847	Unpatented Lode Mining Claim	Mineral	181487	01/09/2025	30-03-2022	SilverOne
IP 310	NV	105762848	Unpatented Lode Mining Claim	Mineral	181488	01/09/2025	30-03-2022	SilverOne
IP 311	NV	105762849	Unpatented Lode Mining Claim	Mineral	181489	01/09/2025	30-03-2022	SilverOne
IP 312	NV	105762850	Unpatented Lode Mining Claim	Mineral	181490	01/09/2025	30-03-2022	SilverOne
IP 313	NV	105762851	Unpatented Lode Mining Claim	Mineral	181491	01/09/2025	30-03-2022	SilverOne
IP 314	NV	105762852	Unpatented Lode Mining Claim	Mineral	181492	01/09/2025	30-03-2022	SilverOne

Claim	BL	M Serial No.	Туре	County	Mineral #	Expiry Date	Loc.Date	Company
IP 315	NV	105762853	Unpatented Lode Mining Claim	Mineral	181493	01/09/2025	30-03-2022	SilverOne
IP 316	NV	105762854	Unpatented Lode Mining Claim	Mineral	181494	01/09/2025	30-03-2022	SilverOne
IP 317	NV	105762855	Unpatented Lode Mining Claim	Mineral	181495	01/09/2025	30-03-2022	SilverOne
IP 318	NV	105762856	Unpatented Lode Mining Claim	Mineral	181496	01/09/2025	30-03-2022	SilverOne
IP 319	NV	105762857	Unpatented Lode Mining Claim	Mineral	181497	01/09/2025	30-03-2022	SilverOne
IP 320	NV	105762858	Unpatented Lode Mining Claim	Mineral	181498	01/09/2025	30-03-2022	SilverOne
IP 321	NV	105762859	Unpatented Lode Mining Claim	Mineral	181499	01/09/2025	30-03-2022	SilverOne
IP 322	NV	105762860	Unpatented Lode Mining Claim	Mineral	181500	01/09/2025	30-03-2022	SilverOne
IP 323	NV	105762861	Unpatented Lode Mining Claim	Mineral	181501	01/09/2025	30-03-2022	SilverOne
IP 324	NV	105762862	Unpatented Lode Mining Claim	Mineral	181502	01/09/2025	30-03-2022	SilverOne
IP 325	NV	105762863	Unpatented Lode Mining Claim	Mineral	181503	01/09/2025	30-03-2022	SilverOne
IP 326	NV	105762864	Unpatented Lode Mining Claim	Mineral	181504	01/09/2025	30-03-2022	SilverOne
IP 327	NV	105762865	Unpatented Lode Mining Claim	Mineral	181505	01/09/2025	30-03-2022	SilverOne
IP 328	NV	105762866	Unpatented Lode Mining Claim	Mineral	181506	01/09/2025	30-03-2022	SilverOne
IP 329	NV	105762867	Unpatented Lode Mining Claim	Mineral	181507	01/09/2025	30-03-2022	SilverOne
IP 330	NV	105762868	Unpatented Lode Mining Claim	Mineral	181508	01/09/2025	30-03-2022	SilverOne
IP 331	NV	105762869	Unpatented Lode Mining Claim	Mineral	181509	01/09/2025	30-03-2022	SilverOne
IP 332	NV	105762870	Unpatented Lode Mining Claim	Mineral	181510	01/09/2025	30-03-2022	SilverOne
IP 333	NV	105762871	Unpatented Lode Mining Claim	Mineral	181511	01/09/2025	30-03-2022	SilverOne
IP 334	NV	105762872	Unpatented Lode Mining Claim	Mineral	181512	01/09/2025	30-03-2022	SilverOne
IP 335	NV	105762873	Unpatented Lode Mining Claim	Mineral	181513	01/09/2025	30-03-2022	SilverOne
IP 336	NV	105762874	Unpatented Lode Mining Claim	Mineral	181514	01/09/2025	30-03-2022	SilverOne